#image_title

Machine learning reveals the control mechanics of an insect wing hinge – Nature

  • Grimaldi, D. & Engel, M. S. Evolution of the Insects (Cambridge Univ. Press, 2005).

  • Deora, T., Gundiah, N. & Sane, S. P. Mechanics of the thorax in flies. J. Exp. Biol. 220, 13821395 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354377 (2018).

    Article 
    ADS 

    Google Scholar 

  • Kramer, M. A. Nonlinear principal component analysis using autoassociative neural networks. AlChE J. 37, 233243 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pringle, J. W. S. The excitation and contraction of the flight muscles of insects. J. Physiol. 108, 226232 (1949).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Josephson, R. K., Malamud, J. G. & Stokes, D. R. Asynchronous muscle: a primer. J. Exp. Biol. 203, 27132722 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gau, J. et al. Bridging two insect flight modes in evolution, physiology and robophysics. Nature 622, 767774 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boettiger, E. G. & Furshpan, E. The mechanics of flight movements in diptera. Biol. Bull. 102, 200211 (1952).

    Article 

    Google Scholar 

  • Pringle, J. W. S. Insect Flight (Cambridge Univ. Press, 1957).

  • Miyan, J. A. & Ewing, A. W. How Diptera move their wings: a re-examination of the wing base articulation and muscle systems concerned with flight. Phil. Trans. R. Soc. B 311, 271302 (1985).

    ADS 

    Google Scholar 

  • Wisser, A. Wing beat of Calliphora erythrocephala: turning axis and gearbox of the wing base (Insecta, Diptera). Zoomorph. 107, 359369 (1988).

    Article 

    Google Scholar 

  • Ennos, R. A. A comparative study of the flight mechanism of diptera. J. Exp. Biol. 127, 355372 (1987).

    Article 

    Google Scholar 

  • Dickinson, M. H. & Tu, M. S. The function of dipteran flight muscle. Comp. Biochem. Physiol. A 116, 223238 (1997).

    Article 

    Google Scholar 

  • Nalbach, G. The gear change mechanism of the blowfly (Calliphora erythrocephala) in tethered flight. J. Comp. Physiol. A 165, 321331 (1989).

    Article 

    Google Scholar 

  • Walker, S. M., Thomas, A. L. R. & Taylor, G. K. Operation of the alula as an indicator of gear change in hoverflies. J. R. Soc. Inter. 9, 11941207 (2011).

    Article 

    Google Scholar 

  • Walker, S. M. et al. In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor. PLoS Biol. 12, e1001823 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wisser, A. & Nachtigall, W. Functional-morphological investigations on the flight muscles and their insertion points in the blowfly Calliphora erythrocephala (Insecta, Diptera). Zoomorph. 104, 188195 (1984).

    Article 

    Google Scholar 

  • Heide, G. Funktion der nicht-fibrillaren Flugmuskeln von Calliphora. I. Lage Insertionsstellen und Innervierungsmuster der Muskeln. Zool. Jahrb., Abt. allg. Zool. Physiol. Tiere 76, 8798 (1971).

    Google Scholar 

  • Fabian, B., Schneeberg, K. & Beutel, R. G. Comparative thoracic anatomy of the wild type and wingless (wg1cn1) mutant of Drosophila melanogaster (Diptera). Arth. Struct. Dev. 45, 611636 (2016).

    Article 

    Google Scholar 

  • Tu, M. & Dickinson, M. Modulation of negative work output from a steering muscle of the blowfly Calliphora vicina. J. Exp. Biol. 192, 207224 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tu, M. S. & Dickinson, M. H. The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina). J. Comp. Physiol. A 178, 813830 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muijres, F. T., Iwasaki, N. A., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics. Interface Focus 7, 20160103 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • OSullivan, A. et al. Multifunctional wing motor control of song and flight. Curr. Biol. 28, 27052717.e4 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Azevedo, A. et al. Tools for comprehensive reconstruction and analysis of Drosophila motor circuits. Preprint at BioRxiv https://doi.org/10.1101/2022.12.15.520299 (2022).

  • Donovan, E. R. et al. Muscle activation patterns and motoranatomy of Annas hummingbirds Calypte anna and zebra finches Taeniopygia guttata. Physiol. Biochem. Zool. 86, 2746 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Bashivan, P., Kar, K. & DiCarlo, J. J. Neural population control via deep image synthesis. Science 364, eaav9436 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lindsay, T., Sustar, A. & Dickinson, M. The function and organization of the motor system controlling flight maneuvers in flies. Curr. Biol. 27, 345358 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reiser, M. B. & Dickinson, M. H. A modular display system for insect behavioral neuroscience. J. Neurosci. Meth. 167, 127139 (2008).

    Article 

    Google Scholar 

  • Albawi, S., Mohammed, T. A. & Al-Zawi, S. Understanding of a convolutional neural network. In 2017 International Conference on Engineering and Technology (ICET) 16 https://doi.org/10.1109/ICEngTechnol.2017.8308186 (2017).

  • Kennedy, J. & Eberhart, R. Particle swarm optimization. In Proc. ICNN95International Conference on Neural Networks Vol. 4, 19421948 (1995).

  • Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649657 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muijres, F. T., Elzinga, M. J., Melis, J. M. & Dickinson, M. H. Flies evade looming targets by executing rapid visually directed banked turns. Science 344, 172177 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gordon, S. & Dickinson, M. H. Role of calcium in the regulation of mechanical power in insect flight. Proc. Natl Acad. Sci. USA 103, 43114315 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nachtigall, W. & Wilson, D. M. Neuro-muscular control of dipteran flight. J. Exp. Biol. 47, 7797 (1967).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heide, G. & Gtz, K. G. Optomotor control of course and altitude in Drosophila melanogaster is correlated with distinct activities of at least three pairs of flight steering muscles. J. Exp. Biol. 199, 17111726 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balint, C. N. & Dickinson, M. H. The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. J. Exp. Biol. 204, 42134226 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elzinga, M. J., Dickson, W. B. & Dickinson, M. H. The influence of sensory delay on the yaw dynamics of a flapping insect. J. R. Soc. Interface 9, 16851696 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. Wing rotation and the aerodynamic basis of insect flight. Science 284, 19541960 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lehmann, F. O. & Dickinson, M. H. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. J. Exp. Biol. 200, 11331143 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lucia, S., Ttulea-Codrean, A., Schoppmeyer, C. & Engell, S. Rapid development of modular and sustainable nonlinear model predictive control solutions. Control Eng. Pract. 60, 5162 (2017).

    Article 

    Google Scholar 

  • Cheng, B., Fry, S. N., Huang, Q. & Deng, X. Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila. J. Exp. Biol. 213, 602612 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Collett, T. S. & Land, M. F. Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J. Comp. Physiol. 99, 166 (1975).

    Article 

    Google Scholar 

  • Muijres, F. T., Elzinga, M. J., Iwasaki, N. A. & Dickinson, M. H. Body saccades of Drosophila consist of stereotyped banked turns. J. Exp. Biol. 218, 864875 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Syme, D. A. & Josephson, R. K. How to build fast muscles: synchronous and asynchronous designs. Integr. Comp. Biol. 42, 762770 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Snodgrass, R. E. Principles of Insect Morphology (Cornell Univ. Press, 2018).

  • Williams, C. M. & Williams, M. V. The flight muscles of Drosophila repleta. J. Morphol. 72, 589599 (1943).

    Article 

    Google Scholar 

  • Wootton, R. The geometry and mechanics of insect wing deformations in flight: a modelling approach. Insects 11, 446 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lerch, S. et al. Resilin matrix distribution, variability and function in Drosophila. BMC Biol. 18, 195 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weis-Fogh, T. A rubber-like protein in insect cuticle. J. Exp. Biol. 37, 889907 (1960).

    Article 
    CAS 

    Google Scholar 

  • Weis-Fogh, T. Energetics of hovering flight in hummingbirds and in Drosophila. J. Exp. Biol. 56, 79104 (1972).

    Article 

    Google Scholar 

  • Ellington, C. P. The aerodynamics of hovering insect flight. VI. Lift and power requirements. Phil. Trans. R. Soc. B 305, 145181 (1984).

    ADS 

    Google Scholar 

  • Alexander, R. M. & Bennet-Clark, H. C. Storage of elastic strain energy in muscle and other tissues. Nature 265, 114117 (1977).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mronz, M. & Lehmann, F.-O. The free-flight response of Drosophila to motion of the visual environment. J. Exp. Biol. 211, 20262045 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Ristroph, L., Bergou, A. J., Guckenheimer, J., Wang, Z. J. & Cohen, I. Paddling mode of forward flight in insects. Phys. Rev. Lett. 106, 178103 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Takemura, S. et al. A connectome of the male Drosophila ventral nerve cord. Preprint at bioRxiv https://doi.org/10.1101/2023.06.05.543757 (2023).

  • Cheong, H. S. J. et al. Transforming descending input into behavior: The organization of premotor circuits in the Drosophila male adult nerve cord connectome. Preprint at BioRxiv https://doi.org/10.1101/2023.06.07.543976 (2023).

  • Martynov, A. B. ber zwei Grundtypen der Flgel bei den Insecten und ihre Evolution. Z. Morph. kol. Tiere 4, 465501 (1925).

    Article 

    Google Scholar 

  • Wipfler, B. et al. Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proc. Natl Acad. Sci. USA 116, 30243029 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasenfuss, I. The evolutionary pathway to insect flighta tentative reconstruction. Arthr. System. Phylog. 66, 1935 (2008).

    Article 

    Google Scholar 

  • Willkommen, J. & Hrnschemeyer, T. The homology of wing base sclerites and flight muscles in Ephemeroptera and Neoptera and the morphology of the pterothorax of Habroleptoides confusa (Insecta: Ephemeroptera: Leptophlebiidae). Arthro. Struc. Develop. 36, 253269 (2007).

    Article 

    Google Scholar 

  • Willmann, R. in Arthropod Relationships (eds Fortey, R. A. & Thomas, R. H.) 269279 (Springer, 1998); https://doi.org/10.1007/978-94-011-4904-4_20.

  • Shao, L. et al. A neural circuit encoding the experience of copulation in female Drosophila. Neuron 102, 10251036.e6 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suver, M. P., Huda, A., Iwasaki, N., Safarik, S. & Dickinson, M. H. An array of descending visual interneurons encoding self-motion in Drosophila. J. Neurosci. 36, 1176811780 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gtz, K. G. Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. J. Exp. Biol. 128, 3546 (1987).

    Article 

    Google Scholar 

  • Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. in Advances in Neural Information Processing Systems Vol. 30 (Curran Associates, 2017).

  • Grewal, M. S. & Andrews, A. P. Kalman Filtering: Theory and Practice with MATLAB (John Wiley & Sons, 2014).

  • Fischler, M. A. & Bolles, R. C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381395 (1981).

    Article 
    MathSciNet 

    Google Scholar 

  • Birch, J. M. & Dickinson, M. H. The influence of wingwake interactions on the production of aerodynamic forces in flapping flight. J. Exp. Biol. 206, 22572272 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Kouvaritakis, B. & Cannon, M. Model Predictive Control: Classical, Robust and Stochastic (Springer, 2016).

  • www.actusduweb.com
    Suivez Actusduweb sur Google News


    Ce site utilise des cookies pour améliorer votre expérience. Nous supposerons que cela vous convient, mais vous pouvez vous désinscrire si vous le souhaitez. J'accepteLire la suite