Artificial intelligence for natural product drug discovery – Nature Reviews Drug Discovery

  • Dobson, P. D., Patel, Y. & Kell, D. B. Metabolite-likeness as a criterion in the design and selection of pharmaceutical drug libraries. Drug Discov. Today 14, 3140 (2009).

    Article
    CAS
    PubMed

    Google Scholar

  • Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770803 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Koehn, F. E. & Carter, G. T. The evolving role of natural products in drug discovery. Nat. Rev. Drug. Discov. 4, 206220 (2005).

    Article
    CAS
    PubMed

    Google Scholar

  • Terlouw, B. R. et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603D610 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726735 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • van der Hooft, J. J. J. et al. Linking genomics and metabolomics to chart specialized metabolic diversity. Chem. Soc. Rev. 49, 32973314 (2020).

    Article
    PubMed

    Google Scholar

  • Doerr, S. et al. TorchMD: a deep learning framework for molecular simulations. J. Chem. Theory Comput. 17, 23552363 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Rodrguez-Espigares, I. et al. GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat. Methods 17, 777787 (2020).

    Article
    PubMed

    Google Scholar

  • Liu, X., IJzerman, A. P. & van Westen, G. J. P. Computational approaches for de novo drug design: past, present, and future. Methods Mol. Biol. 2190, 139165 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Choudhury, C., Arul Murugan, N. & Priyakumar, U. D. Structure-based drug repurposing: traditional and advanced AI/ML-aided methods. Drug Discov. Today 27, 18471861 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29W35 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Skinnider, M. A. et al. Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. Nat. Commun. 11, 6058 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Medema, M. H. & Fischbach, M. A. Computational approaches to natural product discovery. Nat. Chem. Biol. 11, 639648 (2015).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Medema, M. H., de Rond, T. & Moore, B. S. Mining genomes to illuminate the specialized chemistry of life. Nat. Rev. Genet. 22, 553571 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412421 (2014).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 47, e110 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Carroll, L. M. et al. Accurate de novo identification of biosynthetic gene clusters with GECCO. Preprint at bioRxiv https://doi.org/10.1101/2021.05.03.442509 (2021).

  • Sanchez, S. et al. Expansion of novel biosynthetic gene clusters from diverse environments using SanntiS. Preprint at bioRxiv https://doi.org/10.1101/2023.05.23.540769 (2023).

  • Kloosterman, A. M. et al. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. PLoS Biol. 18, e3001026 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • de Los Santos, E. L. C. NeuRiPP: neural network identification of RiPP precursor peptides. Sci. Rep. 9, 13406 (2019).

    Article

    Google Scholar

  • Merwin, N. J. et al. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Proc. Natl Acad. Sci. USA 117, 371380 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470478 (2017).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Louwen, J. J. R. & van der Hooft, J. J. J. Comprehensive large-scale integrative analysis of omics data to accelerate specialized metabolite discovery. mSystems 6, e0072621 (2021).

    Article
    PubMed

    Google Scholar

  • Huber, F. et al. Spec2Vec: improved mass spectral similarity scoring through learning of structural relationships. PLoS Comput. Biol. 17, e1008724 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Huber, F., van der Burg, S., van der Hooft, J. J. J. & Ridder, L. MS2DeepScore: a novel deep learning similarity measure to compare tandem mass spectra. J. Cheminform. 13, 84 (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Ludwig, M. et al. Databse-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nat. Mach. Intell. 2, 629641 (2020).

    Article

    Google Scholar

  • Hoffmann, M. A. et al. High-confidence structural annotation of metabolites absent from spectral libraries. Nat. Biotechnol. 40, 411421 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Dhrkop, K. et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 39, 462471 (2021).

    Article
    PubMed

    Google Scholar

  • Kim, H. W. et al. NPClassifier: a deep neural network-based structural classification tool for natural products. J. Nat. Prod. 84, 27952807 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Aalizadeh, R., Nika, M.-C. & Thomaidis, N. S. Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants. J. Hazard. Mater. 363, 277285 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Chen, D., Wang, Z., Guo, D., Orekhov, V. & Qu, X. Review and prospect: deep learning in nuclear magnetic resonance spectroscopy. Chemistry 26, 1039110401 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Wu, K. et al. Improvement in signal-to-noise ratio of liquid-state NMR spectroscopy via a deep neural network DN-unet. Anal. Chem. 93, 13771382 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Ito, K., Xu, X. & Kikuchi, J. Improved prediction of carbonless NMR spectra by the machine learning of theoretical and fragment descriptors for environmental mixture analysis. Anal. Chem. 93, 69016906 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Li, D.-W., Hansen, A. L., Yuan, C., Bruschweiler-Li, L. & Brschweiler, R. DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra. Nat. Commun. 12, 5229 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zheng, S. et al. Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP. Nat. Commun. 13, 3342 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Milanowski, D. J. et al. Unequivocal determination of caulamidines A and B: application and validation of new tools in the structure elucidation tool box. Chem. Sci. 9, 307314 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Audoin, C. et al. Metabolome consistency: additional parazoanthines from the mediterranean zoanthid parazoanthus axinellae. Metabolites 4, 421432 (2014).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Fox Ramos, A. E. et al. CANPA: computer-assisted natural products anticipation. Anal. Chem. 91, 1124711252 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Jones, C. G. et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 15871592 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kim, L. J. et al. Prospecting for natural products by genome mining and microcrystal electron diffraction. Nat. Chem. Biol. 17, 872877 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Dhrkop, K., Shen, H., Meusel, M., Rousu, J. & Bcker, S. Searching molecular structure databases with tandem mass spectra using CSI:fingerID. Proc. Natl Acad. Sci. USA 112, 1258012585 (2015).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Lindsay, R. K. Applications of Artificial Intelligence for Organic Chemistry: The DENDRAL Project (McGraw-Hill, 1980).

  • Dhrkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299302 (2019).

    Article
    PubMed

    Google Scholar

  • Stravs, M. A., Dhrkop, K., Bcker, S. & Zamboni, N. MSNovelist: de novo structure generation from mass spectra. Nat. Methods 19, 865870 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Colby, S. M., Nuez, J. R., Hodas, N. O., Corley, C. D. & Renslow, R. R. Deep learning to generate chemical property libraries and candidate molecules for small molecule identification in complex samples. Anal. Chem. 92, 17201729 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Burns, D. C., Mazzola, E. P. & Reynolds, W. F. The role of computer-assisted structure elucidation (CASE) programs in the structure elucidation of complex natural products. Nat. Prod. Rep. 36, 919933 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Reher, R. et al. A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products. J. Am. Chem. Soc. 142, 41144120 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kim, H. W., Zhang, C., Cottrell, G. W. & Gerwick, W. H. SMARTMiner: a convolutional neural networkbased metabolite identification from 1H13C HSQC spectra. Magn. Reson. Chem. 60, 10701075 (2022).

    Article
    PubMed

    Google Scholar

  • Wang, C. et al. COLMAR lipids web server and ultrahigh-resolution methods for two-dimensional nuclear magnetic resonance- and mass spectrometry-based lipidomics. J. Proteome Res. 19, 16741683 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Smith, S. G. & Goodman, J. M. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J. Am. Chem. Soc. 132, 1294612959 (2010).

    Article
    CAS
    PubMed

    Google Scholar

  • Howarth, A., Ermanis, K. & Goodman, J. DP4-AI automated NMR data analysis: straight from spectrometer to structure. Chem. Sci. 11, 43514359 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Das, S., Edison, A. S. & Merz, K. M. Jr. Metabolite structure assignment using in silico NMR techniques. Anal. Chem. 92, 1041210419 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Rodrigues, T., Reker, D., Schneider, P. & Schneider, G. Counting on natural products for drug design. Nat. Chem. 8, 531541 (2016).

    Article
    CAS
    PubMed

    Google Scholar

  • Lanz, J. & Riedl, R. Merging allosteric and active site binding motifs: de novo generation of target selectivity and potency via natural-product-derived fragments. ChemMedChem 10, 451454 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Reker, D. et al. Revealing the macromolecular targets of complex natural products. Nat. Chem. 6, 10721078 (2014).

    Article
    CAS
    PubMed

    Google Scholar

  • Wassermann, A. M. et al. A screening pattern recognition method finds new and divergent targets for drugs and natural products. ACS Chem. Biol. 9, 16221631 (2014).

    Article
    CAS
    PubMed

    Google Scholar

  • Rollinger, J. M., Hornick, A., Langer, T., Stuppner, H. & Prast, H. Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. J. Med. Chem. 47, 62486254 (2004).

    Article
    CAS
    PubMed

    Google Scholar

  • Reker, D. et al. Machine learning uncovers food- and excipient-drug interactions. Cell Rep. 30, 37103716.e4 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Conde, J. et al. Allosteric antagonist modulation of TRPV2 by piperlongumine impairs glioblastoma progression. ACS Cent. Sci. 7, 868881 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Lagunin, A., Filimonov, D. & Poroikov, V. Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr. Pharm. Des. 16, 17031717 (2010).

    Article
    CAS
    PubMed

    Google Scholar

  • S, M. S. et al. Antimalarial activity of physalins B, D, F, and G. J. Nat. Prod. 74, 22692272 (2011).

    Article
    PubMed

    Google Scholar

  • Schneider, G. et al. Deorphaning the macromolecular targets of the natural anticancer compound doliculide. Angew. Chem. Int. Ed. Engl. 55, 1240812411 (2016).

    Article
    CAS
    PubMed

    Google Scholar

  • Bertoni, M. et al. Bioactivity descriptors for uncharacterized chemical compounds. Nat. Commun. 12, 3932 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 181, 475483 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 33703388 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01349-8 (2023).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583589 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Pandey, M. et al. The transformational role of GPU computing and deep learning in drug discovery. Nat. Mach. Intell. 4, 211221 (2022).

    Article

    Google Scholar

  • Schindler, C. E. M. et al. Large-scale assessment of binding free energy calculations in active drug discovery projects. J. Chem. Inf. Model. 60, 54575474 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Walker, A. S. & Clardy, J. A machine learning bioinformatics method to predict biological activity from biosynthetic gene clusters. J. Chem. Inf. Model. 61, 25602571 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yang, Z. et al. Deep-BGCpred: a unified deep learning genome-mining framework for biosynthetic gene cluster prediction. Preprint at bioRxiv https://doi.org/10.1101/2021.11.15.468547 (2021).

  • Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space. Preprint at arXiv. https://doi.org/10.48550/ARXIV.1301.3781 (2013).

  • Thaker, M. N. et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31, 922927 (2013).

    Article
    CAS
    PubMed

    Google Scholar

  • Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517D525 (2020).

    CAS
    PubMed

    Google Scholar

  • Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 34913500 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mungan, M. D. et al. ARTS 2.0: feature updates and expansion of the antibiotic resistant target seeker for comparative genome mining. Nucleic Acids Res. 48, W546W552 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566D573 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Slem-Mojica, N., Aguilar, C., Gutirrez-Garca, K., Martnez-Guerrero, C. E. & Barona-Gmez, F. EvoMining reveals the origin and fate of natural product biosynthetic enzymes. Microb. Genom. 5, e000260 (2019).

    PubMed
    PubMed Central

    Google Scholar

  • Chevrette, M. G. et al. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat. Prod. Rep. 37, 566599 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Cereto-Massagu, A. et al. Molecular fingerprint similarity search in virtual screening. Methods 71, 5863 (2015).

    Article
    PubMed

    Google Scholar

  • Willighagen, E. L. et al. The chemistry development kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J. Cheminform. 9, 33 (2017).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Todeschini, R. & Consonni, V. Handbook of Molecular Descriptors (John Wiley & Sons, 2008).

  • Skinnider, M. A., Dejong, C. A., Franczak, B. C., McNicholas, P. D. & Magarvey, N. A. Comparative analysis of chemical similarity methods for modular natural products with a hypothetical structure enumeration algorithm. J. Cheminform. 9, 46 (2017).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742754 (2010).

    Article
    CAS
    PubMed

    Google Scholar

  • Riniker, S. & Landrum, G. A. Open-source platform to benchmark fingerprints for ligand-based virtual screening. J. Cheminform. 5, 26 (2013).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • OBoyle, N. M. & Sayle, R. A. Comparing structural fingerprints using a literature-based similarity benchmark. J. Cheminform. 8, 36 (2016).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Grisoni, F. et al. Scaffold hopping from natural products to synthetic mimetics by holistic molecular similarity. Commun. Chem. 1, 44 (2018).

    Article

    Google Scholar

  • Capecchi, A., Probst, D. & Reymond, J.-L. One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. J. Cheminform. 12, 43 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Capecchi, A. & Reymond, J.-L. Assigning the origin of microbial natural products by chemical space map and machine learning. Biomolecules 10, 1385 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Riniker, S. Molecular dynamics fingerprints (MDFP): machine learning from MD data to predict free-energy differences. J. Chem. Inf. Model. 57, 726741 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Esposito, C., Wang, S., Lange, U. E. W., Oellien, F. & Riniker, S. Combining machine learning and molecular dynamics to predict p-glycoprotein substrates. J. Chem. Inf. Model. 60, 47304749 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Bannan, C. C. et al. Blind prediction of cyclohexanewater distribution coefficients from the SAMPL5 challenge. J. Comput. Aided Mol. Des. 30, 927944 (2016).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wang, S. & Riniker, S. Use of molecular dynamics fingerprints (MDFPs) in SAMPL6 octanol-water log P blind challenge. J. Comput. Aided Mol. Des. 34, 393403 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Gorostiola Gonzlez, M. et al. 3DDPDs: describing protein dynamics for proteochemometric bioactivity prediction. A case for (mutant) G protein-coupled receptors. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv-2023-90082 (2023).

  • Durairaj, J., Akdel, M., de Ridder, D. & van Dijk, A. D. J. Geometricus represents protein structures as shape-mers derived from moment invariants. Bioinformatics 36, i718i725 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Paull, K. D. et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J. Natl Cancer Inst. 81, 10881092 (1989).

    Article
    CAS
    PubMed

    Google Scholar

  • Kauvar, L. M. et al. Predicting ligand binding to proteins by affinity fingerprinting. Chem. Biol. 2, 107118 (1995).

    Article
    CAS
    PubMed

    Google Scholar

  • Petrone, P. M. et al. Rethinking molecular similarity: comparing compounds on the basis of biological activity. ACS Chem. Biol. 7, 13991409 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Norinder, U., Spjuth, O. & Svensson, F. Using predicted bioactivity profiles to improve predictive modeling. J. Chem. Inf. Model. 60, 28302837 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Mater, A. C. & Coote, M. L. Deep learning in chemistry. J. Chem. Inf. Model. 59, 25452559 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Bronstein, M. M., Bruna, J., Cohen, T. & Velikovi, P. Geometric deep learning: grids, groups, graphs, geodesics, and gauges. Preprint at arXiv. https://doi.org/10.48550/arXiv.2104.13478 (2021).

  • Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513530 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • van Tilborg, D., Alenicheva, A. & Grisoni, F. Exposing the limitations of molecular machine learning with activity cliffs. J. Chem. Inf. Model. 62, 59385951 (2022).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K. & Mller, K.-R. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (Springer Nature, 2019).

  • Jimnez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2, 573584 (2020).

    Article

    Google Scholar

  • Jimnez-Luna, J., Skalic, M., Weskamp, N. & Schneider, G. Coloring molecules with explainable artificial intelligence for preclinical relevance assessment. J. Chem. Inf. Model. 61, 10831094 (2021).

    Article
    PubMed

    Google Scholar

  • Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S. & Unterthiner, T. in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (eds Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K. & Mller, K.-R.) 331345 (Springer International Publishing, 2019).

  • Webel, H. E. et al. Revealing cytotoxic substructures in molecules using deep learning. J. Comput. Aided Mol. Des. 34, 731746 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30, 595608 (2016).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Coley, C. W., Barzilay, R., Green, W. H., Jaakkola, T. S. & Jensen, K. F. Convolutional embedding of attributed molecular graphs for physical property prediction. J. Chem. Inf. Model. 57, 17571772 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Duvenaud, D. et al. Convolutional networks on graphs for learning molecular fingerprints. in Advances in Neural Information Processing Systems 28 (NIPS 015).

  • Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. in Proceedings of the 34th International Conference on Machine Learning 12631272 (2017).

  • Nguyen, T. et al. GraphDTA: predicting drug-target binding affinity with graph neural networks. Bioinformatics 37, 11401147 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Yuan, W. et al. Chemical space mimicry for drug discovery. J. Chem. Inf. Model. 57, 875882 (2017).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Segler, M. H. S., Kogej, T., Tyrchan, C. & Waller, M. P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 4, 120131 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Liu, X., Ye, K., van Vlijmen, H. W. T., IJzerman, A. P. & van Westen, G. J. P. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning. J. Cheminform. 15, 24 (2023).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Li, X. & Fourches, D. Inductive transfer learning for molecular activity prediction: next-gen QSAR models with MolPMoFiT. J. Cheminform. 12, 27 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Karpov, P., Godin, G. & Tetko, I. V. Transformer-CNN: Swiss knife for QSAR modeling and interpretation. J. Cheminform. 12, 17 (2020).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184192 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Winter, R., Montanari, F., No, F. & Clevert, D.-A. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem. Sci. 10, 16921701 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Bjerrum, E. J. & Sattarov, B. Improving chemical autoencoder latent space and molecular generation diversity with heteroencoders. Biomolecules 8, 131 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Gmez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268276 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Atz, K., Grisoni, F. & Schneider, G. Geometric deep learning on molecular representations. Nat. Mach. Intell. 3, 10231032 (2021).

    Article

    Google Scholar

  • Callaway, E. After AlphaFold: protein-folding contest seeks next big breakthrough. Nature 613, 1314 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Wallner, B. AFsample: improving multimer prediction with alphafold using aggressive sampling. Preprint at bioRxiv https://doi.org/10.1101/2022.12.20.521205 (2022).

  • Bender, A. & Corts-Ciriano, I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet. Drug Discov. Today 26, 511524 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Bender, A. & Corts-Ciriano, I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data. Drug Discov. Today 26, 10401052 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Sydow, D., Rodrguez-Guerra, J. & Volkamer, A. in Teaching Programming across the Chemistry Curriculum 135158 ACS Symposium Series vol. 1387 (American Chemical Society, 2021).

  • Korshunova, M., Ginsburg, B., Tropsha, A. & Isayev, O. OpenChem: a deep learning toolkit for computational chemistry and drug design. J. Chem. Inf. Model. 61, 713 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Sieg, J., Flachsenberg, F. & Rarey, M. In need of bias control: evaluating chemical data for machine learning in structure-based virtual screening. J. Chem. Inf. Model. 59, 947961 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Lenselink, E. B. et al. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J. Cheminform. 9, 45 (2017).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206215 (2019).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Topuolu, B. D., Lesniak, N. A., Ruffin, M. T. 4th, Wiens, J. & Schloss, P. D. A framework for effective application of machine learning to microbiome-based classification problems. MBio 11, e00434-20 (2020).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Quinn, T. P. & Erb, I. Examining microbemetabolite correlations by linear methods. Nat. Methods 18, 3739 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Morger, A. et al. KnowTox: pipeline and case study for confident prediction of potential toxic effects of compounds in early phases of development. J. Cheminform. 12, 24 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Soleimany, A. P. et al. Evidential deep learning for guided molecular property prediction and discovery. ACS Cent. Sci. 7, 13561367 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Manica, M. et al. Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders. Mol. Pharm. 16, 47974806 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Grinsztajn, L., Oyallon, E. & Varoquaux, G. in Advances in Neural Information Processing Systems 35 (NeurIPS 2022) 507520 (2022).

  • Chithrananda, S., Grand, G. & Ramsundar, B. ChemBERTa: large-scale self-supervised pretraining for molecular property prediction. Preprint at https://doi.org/10.48550/arXiv.2010.09885 (2020).

  • Irwin, R., Dimitriadis, S., He, J. & Bjerrum, E. J. Chemformer: a pre-trained transformer for computational chemistry. Mach. Learn. Sci. Technol. 3, 015022 (2022).

    Article

    Google Scholar

  • Chapelle, O., Zien, A. & Schlkopf, B. (Eds)Semi-Supervised Learning (MIT, 2006).

  • Zhang, Y. & Lee, A. A. Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning. Chem. Sci. 10, 81548163 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Rttig, M. et al. NRPSpredictor2a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39, W362W367 (2011).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Torrey, L. & Shavlik, J. in Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques 242264 (IGI Global, 2010).

  • Cai, C. et al. Transfer learning for drug discovery. J. Med. Chem. 63, 86838694 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Moret, M., Helmstdter, M., Grisoni, F., Schneider, G. & Merk, D. Beam search for automated design and scoring of novel ROR ligands with machine intelligence. Angew. Chem. Int. Ed. Engl. 60, 1947719482 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Moret, M., Friedrich, L., Grisoni, F., Merk, D. & Schneider, G. Generative molecular design in low data regimes. Nat. Mach. Intell. 2, 171180 (2020).

    Article

    Google Scholar

  • Moret, M. et al. Leveraging molecular structure and bioactivity with chemical language models for de novo drug design. Nat. Commun. 14, 114 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Reker, D. Practical considerations for active machine learning in drug discovery. Drug Discov. Today Technol. 3233, 7379 (2019).

    Article
    PubMed

    Google Scholar

  • Reker, D., Schneider, P. & Schneider, G. Multi-objective active machine learning rapidly improves structure-activity models and reveals new protein-protein interaction inhibitors. Chem. Sci. 7, 39193927 (2016).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Djoumbou Feunang, Y. et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 8, 61 (2016).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Reher, R. et al. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Nat. Commun. 13, 4619 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9, 48 (2017).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Liu, X., Ye, K., van Vlijmen, H. W. T., IJzerman, A. P. & van Westen, G. J. P. An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor. J. Cheminform. 11, 35 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604610 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Thakkar, A., Kogej, T., Reymond, J.-L., Engkvist, O. & Bjerrum, E. J. Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. Chem. Sci. 11, 154168 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Koch, M., Duigou, T. & Faulon, J.-L. Reinforcement learning for bioretrosynthesis. ACS Synth. Biol. 9, 157168 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Kramer, C., Kalliokoski, T., Gedeck, P. & Vulpetti, A. The experimental uncertainty of heterogeneous public ki data. J. Med. Chem. 55, 51655173 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Tiikkainen, P., Bellis, L., Light, Y. & Franke, L. Estimating error rates in bioactivity databases. J. Chem. Inf. Model. 53, 24992505 (2013).

    Article
    CAS
    PubMed

    Google Scholar

  • Sorokina, M. & Steinbeck, C. Review on natural products databases: where to find data in 2020. J. Cheminform. 12, 151 (2020).

    Article

    Google Scholar

  • Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930D940 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35, D198D201 (2007).

    Article
    CAS
    PubMed

    Google Scholar

  • Wimalaratne, S. M. et al. Uniform resolution of compact identifiers for biomedical data. Sci. Data 5, 180029 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Rajan, K., Zielesny, A. & Steinbeck, C. DECIMER 1.0: deep learning for chemical image recognition using transformers. J. Cheminformatics 13, 61 (2021).

    Article

    Google Scholar

  • Rajan, K., Brinkhaus, H. O., Sorokina, M., Zielesny, A. & Steinbeck, C. DECIMER-segmentation: automated extraction of chemical structure depictions from scientific literature. J. Cheminform. 13, 20 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Schymanski, E. L. & Bolton, E. E. FAIR chemical structures in the Journal of Cheminformatics. J. Cheminform. 13, 50 (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454D458 (2020).

    PubMed

    Google Scholar

  • van Santen, J. A. et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent. Sci. 5, 18241833 (2019).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • van Santen, J. A. et al. The natural products atlas 2.0: a database of microbially-derived natural products. Nucleic Acids Res. 50, D1317D1323 (2021).

    PubMed Central

    Google Scholar

  • Wang, M. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828837 (2016).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wishart, D. S. et al. NP-MRD: the natural products magnetic resonance database. Nucleic Acids Res. 50, D665D677 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Flissi, A. et al. Norine: update of the nonribosomal peptide resource. Nucleic Acids Res. 48, D465D469 (2020).

    CAS
    PubMed

    Google Scholar

  • Jarmusch, S. A., van der Hooft, J. J. J., Dorrestein, P. C. & Jarmusch, A. K. Advancements in capturing and mining mass spectrometry data are transforming natural products research. Nat. Prod. Rep. 38, 20662082 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Jarmusch, A. K. et al. ReDU: a framework to find and reanalyze public mass spectrometry data. Nat. Methods 17, 901904 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Proteau, P. J. Journal of Natural Products 2022: perspectives, monthly cover art, and more. J. Nat. Products 85, 12 (2022).

    Article
    CAS

    Google Scholar

  • Clark, T. N. et al. Interlaboratory comparison of untargeted mass spectrometry data uncovers underlying causes for variability. J. Nat. Prod. 84, 824835 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Fiehn, O. et al. The metabolomics standards initiative (MSI). Metabolomics 3, 175178 (2007).

    Article
    CAS

    Google Scholar

  • Frank, A. M. et al. Clustering millions of tandem mass spectra. J. Proteome Res. 7, 113122 (2008).

    Article
    CAS
    PubMed

    Google Scholar

  • Miller, I. J. et al. Autometa: automated extraction of microbial genomes from individual shotgun metagenomes. Nucleic Acids Res. 47, e57 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 20972098 (2014).

    Article
    CAS
    PubMed

    Google Scholar

  • Deutsch, E. W. et al. Universal spectrum identifier for mass spectra. Nat. Methods 18, 768770 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Bittremieux, W. et al. Universal MS/MS visualization and retrieval with the metabolomics spectrum resolver web service. Preprint at BioRxiv https://doi.org/10.1101/2020.05.09.086066 (2020).

  • Gordon, J. E. Chemical inference. 2. formalization of the language of organic chemistry: generic systematic nomenclature. J. Chem. Inf. Comput. Sci. 24, 8192 (1984).

    Article
    CAS

    Google Scholar

  • Wang, Y. et al. PubChems bioassay database. Nucleic Acids Res. 40, D400D412 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Banerjee, P. et al. Super Natural IIa database of natural products. Nucleic Acids Res. 43, D935D939 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Zeng, X. et al. NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res. 46, D1217D1222 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • van der Hooft, J. J. J. A community-driven paired data platform to accelerate natural product mining by combining structural information from genomes and metabolomes. Preprint at https://doi.org/10.18174/fairdata2018.16286 (2018).

  • Eldjrn, G. H. et al. Ranking microbial metabolomic and genomic links in the NPLinker framework using complementary scoring functions. PLoS Comput. Biol. 17, e1008920 (2021).

    Article

    Google Scholar

  • Schorn, M. A. et al. A community resource for paired genomic and metabolomic data mining. Nat. Chem. Biol. 17, 363368 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Doroghazi, J. R. et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10, 963968 (2014).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • McClure, R. A. et al. Elucidating the rimosamide-detoxin natural product families and their biosynthesis using metabolite/gene cluster correlations. ACS Chem. Biol. 11, 34523460 (2016).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Goering, A. W. et al. Metabologenomics: correlation of microbial gene clusters with metabolites drives discovery of a nonribosomal peptide with an unusual amino acid monomer. ACS Cent. Sci. 2, 99108 (2016).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Parkinson, E. I. et al. Discovery of the tyrobetaine natural products and their biosynthetic gene cluster via metabologenomics. ACS Chem. Biol. 13, 10291037 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Caesar, L. K. et al. Correlative metabologenomics of 110 fungi reveals metabolite-gene cluster pairs. Nat. Chem. Biol. 19, 846854 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Soldatou, S. et al. Comparative metabologenomics analysis of polar actinomycetes. Mar. Drugs 19, 103 (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Sulheim, S. et al. Enzyme-constrained models and omics analysis of streptomyces coelicolor reveal metabolic changes that enhance heterologous production. iScience 23, 101525 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Amos, G. C. A. et al. Comparative transcriptomics as a guide to natural product discovery and biosynthetic gene cluster functionality. Proc. Natl Acad. Sci. USA 114, E11121E11130 (2017).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wandy, J. & Daly, R. GraphOmics: an interactive platform to explore and integrate multi-omics data. BMC Bioinform. 22, 603 (2021).

    Article

    Google Scholar

  • Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvio. Nat. Microbiol. 6, 36 (2020).

    Article

    Google Scholar

  • Sorokina, M., Merseburger, P., Rajan, K., Yirik, M. A. & Steinbeck, C. COCONUT online: collection of open natural products database. J. Cheminform. 13, 2 (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Rutz, A. et al. The LOTUS initiative for open knowledge management in natural products research. eLife 11, e70780 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chen, Y., Stork, C., Hirte, S. & Kirchmair, J. NP-scout: machine learning approach for the quantification and visualization of the natural product-likeness of small molecules. Biomolecules 9, 43 (2019).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Cao, L. et al. MolDiscovery: learning mass spectrometry fragmentation of small molecules. Nat. Commun. 12, 3718 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Visser, U. et al. BioAssay Ontology (BAO): a semantic description of bioassays and high-throughput screening results. BMC Bioinform. 12, 257 (2011).

    Article

    Google Scholar

  • Sarntivijai, S. et al. CLO: the cell line ontology. J. Biomed. Semant. 5, 37 (2014).

    Article

    Google Scholar

  • Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6, 813823 (2006).

    Article
    CAS
    PubMed

    Google Scholar

  • Cooper, M. A. A community-based approach to new antibiotic discovery. Nat. Rev. Drug. Discov. 14, 587588 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Cech, N. B., Medema, M. H. & Clardy, J. Benefiting from big data in natural products: importance of preserving foundational skills and prioritizing data quality. Nat. Prod. Rep. 38, 19471953 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Blin, K., Shaw, S., Kautsar, S. A., Medema, M. H. & Weber, T. The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes. Nucleic Acids Res. 49, D639D643 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Horai, H. et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass. Spectrom. 45, 703714 (2010).

    Article
    CAS
    PubMed

    Google Scholar

  • Haug, K. et al. MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 48, D440D444 (2020).

    CAS
    PubMed

    Google Scholar

  • Kuhn, S. & Schlrer, N. E. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2a free in-house NMR database with integrated LIMS for academic service laboratories. Magn. Reson. Chem. 53, 582589 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Irwin, J. J. et al. ZINC20a free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model. 60, 60656073 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hastings, J. et al. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 44, D1214D1219 (2016).

    Article
    CAS
    PubMed

    Google Scholar

  • Martens, M. et al. WikiPathways: connecting communities. Nucleic Acids Res. 49, D613D621 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498D503 (2020).

    CAS
    PubMed

    Google Scholar

  • Blaskovich, M. A. T., Zuegg, J., Elliott, A. G. & Cooper, M. A. Helping chemists discover new antibiotics. ACS Infect. Dis. 1, 285287 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Waagmeester, A. et al. Wikidata as a knowledge graph for the life sciences. eLife 9, e52614 (2020).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Reker, D., Rodrigues, T., Schneider, P. & Schneider, G. Target prediction by cascaded self-organizing maps for ligand de-orphaning and side-effect investigation. J. Cheminform. 6, P47 (2014).

    Article
    PubMed Central

    Google Scholar

  • Navarro-Muoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 6068 (2020).

    Article
    PubMed

    Google Scholar

  • van der Hooft, J. J. J., Wandy, J., Barrett, M. P., Burgess, K. E. V. & Rogers, S. Topic modeling for untargeted substructure exploration in metabolomics. Proc. Natl Acad. Sci. USA 113, 1373813743 (2016).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Reymond, J.-L. The chemical space project. Acc. Chem. Res. 48, 722730 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 46, 326 (2001).

    Article
    CAS
    PubMed

    Google Scholar

  • Janssen, A. P. A. et al. Drug discovery maps, a machine learning model that visualizes and predicts kinomeinhibitor interaction landscapes. J. Chem. Inf. Model. 59, 12211229 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • McInnes, L., Healy, J., Saul, N. & Groberger, L. UMAP: uniform manifold approximation and projection. J. Open. Source Softw. 3, 861 (2018).

    Article

    Google Scholar

  • Probst, D. & Reymond, J.-L. Visualization of very large high-dimensional data sets as minimum spanning trees. J. Cheminform. 12, 12 (2020).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Feher, M. & Schmidt, J. M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43, 218227 (2003).

    Article
    CAS
    PubMed

    Google Scholar

  • Bquignon, O. J. M. et al. Papyrus: a large-scale curated dataset aimed at bioactivity predictions. J. Cheminform. 15, 3 (2023).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • www.actusduweb.com
    Suivez Actusduweb sur Google News


    Ce site utilise des cookies pour améliorer votre expérience. Nous supposerons que cela vous convient, mais vous pouvez vous désinscrire si vous le souhaitez. J'accepteLire la suite