Aligning artificial intelligence with climate change mitigation – Nature Climate Change

  • Zhang, D. et al. Artificial Intelligence Index Report 2021 (AI Index Steering Committee, Human-Centered AI Institute, 2021).

  • Digital Technology and the Planet: Harnessing Computing to Achieve Net Zero (Royal Society, 2020); https://royalsociety.org/-/media/policy/projects/digital-technology-and-the-planet/digital-technology-and-the-planet-report.pdf

  • Kaack, L. H., Donti, P. L., Strubell, E. & Rolnick, D. Artificial Intelligence and Climate Change: Opportunities, Considerations, and Policy Levers to Align AI with Climate Change Goals (Heinrich-Bll-Stiftung, 2020); https://eu.boell.org/en/2020/12/03/artificial-intelligence-and-climate-change

  • Harnessing Artificial Intelligence to Accelerate the Energy Transition (World Economic Forum, 2021); https://www.weforum.org/whitepapers/harnessing-artificial-intelligence-to-accelerate-the-energy-transition

  • Berkhout, F. & Hertin, J. De-materialising and re-materialising: digital technologies and the environment. Futures 36, 903920 (2004).

    Article

    Google Scholar

  • Hilty, L. M. & Aebischer, B. in ICT Innovations for Sustainability (eds Hilty, L. M. & Aebischer, B) 336 (Springer, 2015).

  • Rolnick, D. et al. Tackling climate change with machine learning. ACM Comput. Surv. https://doi.org/10.1145/3485128 (2022).

  • Oil in the Cloud: How Tech Companies are Helping Big Oil Profit from Climate Destruction (Greenpeace, 2019); https://www.greenpeace.org/usa/reports/oil-in-the-cloud/

  • Dobbe, R. & Whittaker, M. AI and climate change: how theyre connected, and what we can do about it. Medium https://medium.com/@AINowInstitute/ai-and-climate-change-how-theyre-connected-and-what-we-can-do-about-it-6aa8d0f5b32c (2019).

  • Strubell, E., Ganesh, A. & McCallum, A. Energy and policy considerations for deep learning in NLP. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 36453650 (Association for Computational Linguistics, 2019); https://doi.org/10.18653/v1/P19-1355

  • Schwartz, R., Dodge, J., Smith, N. A. & Etzioni, O. Green AI. Commun. ACM 63, 5463 (2020).

    Article

    Google Scholar

  • Dauvergne, P. Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs. Rev. Int. Polit. Econ. https://doi.org/10.1080/09692290.2020.1814381 (2020).

  • Coeckelbergh, M. AI for climate: freedom, justice, and other ethical and political challenges. AI Ethics 1, 6772 (2021).

    Article

    Google Scholar

  • Gunther, H. & Rose, J. Governing AI: the importance of environmentally sustainable and equitable innovation. Environ. Law Rep. 50, 10888 (2020).

  • Stein, A. L. Artificial intelligence and climate change. Yale J. Reg. 37, 890939 (2020).

    Google Scholar

  • Cowls, J., Tsamados, A., Taddeo, M. & Floridi, L. The AI gambit-leveraging artificial intelligence to combat climate change: opportunities, challenges, and recommendations. SSRN https://ssrn.com/abstract=3804983 (2021).

  • FAccT 21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (ACM, 2021).

  • Recommendation on the Ethics of Artificial Intelligence (UNESCO, 2021); https://unesdoc.unesco.org/ark:/48223/pf0000380455

  • Areas for Future Action in the Responsible AI Ecosystem (The Future Society, GPAI Responsible Development, Use and Governance of AI Working Group & CEIMIA, 2020); https://www.gpai.ai/projects/responsible-ai/areas-for-future-action-in-responsible-ai.pdf

  • Horner, N. C., Shehabi, A. & Azevedo, I. L. Known unknowns: indirect energy effects of information and communication technology. Environ. Res. Lett. 11, 103001 (2016).

    Article

    Google Scholar

  • Bieser, J. & Hilty, L. Indirect effects of the digital transformation on environmental sustainability: methodological challenges in assessing the greenhouse gas abatement potential of ICT. In 5th International Conference on Information and Communication Technology for Sustainability 6881 (EasyChair, 2018); https://doi.org/10.29007/lx7q

  • Pohl, J., Hilty, L. M. & Finkbeiner, M. How LCA contributes to the environmental assessment of higher order effects of ICT application: a review of different approaches. J. Clean. Prod. 219, 698712 (2019).

    Article

    Google Scholar

  • Digitalization & Energy (OECD/IEA, 2017); https://www.iea.org/reports/digitalisation-and-energy

  • Sivaram, V. et al. Digital Decarbonization Promoting Digital Innovations to Advance Clean Energy Systems (Council on Foreign Relations, 2018); https://www.cfr.org/report/digital-decarbonization

  • Wilson, C., Kerr, L., Sprei, F., Vrain, E. & Wilson, M. Potential climate benefits of digital consumer innovations. Annu. Rev. Environ. Resour. 45, 113144 (2020).

    Article

    Google Scholar

  • Canziani, A., Paszke, A. & Culurciello, E. An analysis of deep neural network models for practical applications. Preprint at https://arxiv.org/abs/1605.07678 (2017).

  • AI and compute. OpenAI https://openai.com/blog/ai-and-compute (16 May 2018).

  • Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at https://arxiv.org/abs/2108.07258 (2021).

  • Joulin, A., Grave, E., Bojanowski, P. & Mikolov, T. Bag of tricks for efficient text classification. In Proc. 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2 427431 (Association for Computational Linguistics, 2017); https://www.aclweb.org/anthology/E17-2068

  • Hazelwood, K. et al. Applied machine learning at Facebook: a datacenter infrastructure perspective. In 2018 IEEE International Symposium on High Performance Computer Architecture 620629 (IEEE, 2018); https://doi.org/10.1109/HPCA.2018.00059

  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. MobileNetV2: inverted residuals and linear bottlenecks. In IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2018).

  • Turovsky, B. Ten years of Google Translate. The Keyword https://blog.google/products/translate/ten-years-of-google-translate (2016).

  • Wu, C. J. et al. Sustainable AI: environmental implications, challenges and opportunities. In Proc. Machine Learning and Systems 4 795813 (MLSys, 2022).

  • Jiang, A. H. et al. Accelerating deep learning by focusing on the biggest losers. Preprint at https://arxiv.org/abs/1910.00762 (2019).

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition 770778 (IEEE, 2016); https://doi.org/10.1109/CVPR.2016.90

  • Albanie, S. ConvNet-Burden: estimates of memory consumption and FLOP counts for various convolutional neural networks. GitHub https://github.com/albanie/convnet-burden (2019).

  • Bender, E. M., Gebru, T., McMillan-Major, A. & Shmitchell, S. On the dangers of stochastic parrots: can language models be too big? In Proc. 2021 ACM Conference on Fairness, Accountability, and Transparency 610623 (ACM, 2021).

  • Gupta, A., Lanteigne, C. & Kingsley, S. SECure: a social and environmental certificate for AI Systems. Preprint at https://arxiv.org/abs/2006.06217 (2020).

  • Tomaev, N. et al. AI for social good: unlocking the opportunity for positive impact. Nat. Commun. 11, 2468 (2020).

    Article

    Google Scholar

  • Henderson, P. et al. Towards the systematic reporting of the energy and carbon footprints of machine learning. J. Mach. Learn. Res. 21, 143 (2020).

    Google Scholar

  • Schmidt, V. et al. CodeCarbon: estimate and track carbon emissions from machine learning computing. Zenodo https://doi.org/10.5281/zenodo.4658424 (2021).

  • Anthony, L. F. W., Kanding, B. & Selvan, R. Carbontracker: tracking and predicting the carbon footprint of training deep learning models. Preprint at https://arxiv.org/abs/2007.03051 (2020).

  • Cai, E., Juan, D., Stamoulis, D. & Marculescu, D. NeuralPower: predict and deploy energy-efficient convolutional neural networks. In 9th Asian Conference on Machine Learning (ACML, 2017).

  • Dodge, J., Gururangan, S., Card, D., Schwartz, R. & Smith, N. A. Show your work: improved reporting of experimental results. In Proc. 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing 21852194 (Association for Computational Linguistics, 2019); https://doi.org/10.18653/v1/D19-1224

  • Mattson, P. et al. (eds) Proc. Machine Learning and Systems 2 336349 (MLSys, 2020).

  • Reddi, V. J. et al. MLPerf inference benchmark. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture 446459 (IEEE, 2020); https://doi.org/10.1109/ISCA45697.2020.00045

  • Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a neural network. In NeurIPS Deep Learning Workshop (NeurIPS, 2014).

  • Schaul, T., Quan, J., Antonoglou, I. & Silver, D. Prioritized experience replay. In International Conference on Learning Representations (ICLR, 2016).

  • Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. Quantized neural networks: training neural networks with low precision weights and activations. J. Mach. Learn. Res. 18, 130 (2018).

    Google Scholar

  • Pfeiffer, J. et al. Adapterhub: a framework for adapting transformers. In Proc. 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations 4654 (Association for Computational Linguistics, 2020).

  • Cai, H., Gan, C., Wang, T., Zhang, Z. & Han, S. Once-for-all: train one network and specialize it for efficient deployment. In International Conference on Learning Representations (ICLR, 2020).

  • Lepikhin, D. et al. GShard: scaling giant models with conditional computation and automatic sharding. In International Conference on Learning Representations (ICLR, 2021).

  • Hooker, S., Moorosi, N., Clark, G., Bengio, S. & Denton, E. Characterizing and mitigating bias in compact models. In ICML Workshop on Human Interpretability in Machine Learning (ICML, 2020).

  • Greenhouse Gas Emissions Trajectories for the Information and Communication Technology Sector Compatible with the UNFCCC Paris Agreement (International Telecommunication Union, 2020); http://handle.itu.int/11.1002/1000/14084

  • Malmodin, J. & Lundn, D. The energy and carbon footprint of the global ICT and E&M sectors 20102015. Sustainability 10, 3027 (2018).

    Article

    Google Scholar

  • Masanet, E., Shehabi, A., Lei, N., Smith, S. & Koomey, J. Recalibrating global data center energy-use estimates. Science 367, 984986 (2020).

    CAS
    Article

    Google Scholar

  • Data Centres and Data Transmission Networks (International Energy Agency, 2021); https://www.iea.org/reports/data-centres-and-data-transmission-networks

  • Montevecchi, F., Stickler, T., Hintemann, R. & Hinterholzer, S. Energy-Efficient Cloud Computing Technologies and Policies for an Eco-Friendly Cloud Market (2020); https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=71330

  • Cisco Global Cloud Index: Forecast and Methodology, 20162021 (Cisco, 2018); https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf

  • Compton, C. Ciscos Global Cloud Index study: acceleration of the multicloud era. Cisco Blogs https://blogs.cisco.com/news/acceleration-of-multicloud-era (2018).

  • Wu, C. et al. Machine learning at Facebook: understanding inference at the edge. In 2019 IEEE International Symposium on High Performance Computer Architecture 331344 (IEEE, 2019).

  • Koomey, J., Berard, S., Sanchez, M. & Wong, H. Implications of historical trends in the electrical efficiency of computing. IEEE Ann. Hist. Comput. 33, 4654 (2010).

    Article

    Google Scholar

  • Koomey, J. & Naffziger, S. Moore’s law might be slowing down, but not energy efficiency. IEEE Spectrum 52, 35 (2015).

    Google Scholar

  • Facebook Sustainability Data 2020 (Facebook, 2021); https://sustainability.fb.com/wp-content/uploads/2021/06/2020_FB_Sustainability-Data.pdf

  • Naumov, M. et al. Deep learning training in Facebook data centers: design of scale-up and scale-out systems. Preprint at https://arxiv.org/abs/2003.09518 (2020).

  • Park, J. et al. Deep learning inference in Facebook data centers: characterization, performance optimizations and hardware implications. Preprint at https://arxiv.org/abs/1811.09886 (2018).

  • Shehabi, A. et al. United States Data Center Energy Usage Report (Lawrence Berkeley National Laboratory, 2016); https://eta.lbl.gov/publications/united-states-data-center-energy

  • Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 44th Annual International Symposium on Computer Architecture 112 (ACM, 2017).

  • Radovanovic, A. Our data centers now work harder when the sun shines and wind blows. The Keyword https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows (2020).

  • Whitehead, B., Andrews, D. & Shah, A. The life cycle assessment of a UK data centre. Int. J. Life Cycle Assess. 20, 332349 (2015).

    Article

    Google Scholar

  • Masanet, E., Shehabi, A. & Koomey, J. Characteristics of low-carbon data centres. Nat. Clim. Change 3, 627630 (2013).

    Article

    Google Scholar

  • Hischier, R., Coroama, V. C., Schien, D. & Achachlouei, M. A. in ICT Innovations for Sustainability (eds Hilty, L. M. & Aebischer, B.) 171189 (Springer, 2015).

  • Andr Barroso, L., Clidaras, J. & Hlzle, U. The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Arch. 8, 1154 (2013).

    Google Scholar

  • Gupta, U. et al. Chasing carbon: the elusive environmental footprint of computing. In IEEE International Symposium on High-Performance Computer Architecture 854867 (IEEE, 2021).

  • Finer, M. et al. Combating deforestation: from satellite to intervention. Science 360, 13031305 (2018).

    CAS
    Article

    Google Scholar

  • Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).

    CAS
    Article

    Google Scholar

  • Friederich, D., Kaack, L. H., Luccioni, A. & Steffen, B. Automated identification of climate risk disclosures in annual corporate reports. Preprint at https://arxiv.org/abs/2108.01415 (2021).

  • Liu, Y., Guo, B., Zou, X., Li, Y. & Shi, S. Machine learning assisted materials design and discovery for rechargeable batteries. Energy Storage Mater. 31, 434450 (2020).

    Article

    Google Scholar

  • Ahmed, R., Sreeram, V., Mishra, Y. & Arif, M. D. A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. Renew. Sustain. Energy Rev. 124, 109792 (2020).

    Article

    Google Scholar

  • You, J., Li, X., Low, M., Lobell, D. & Ermon, S. Deep Gaussian process for crop yield prediction based on remote sensing data. In Thirty-First AAAI Conference on Artificial Intelligence 45594565 (ACM, 2017).

  • Toqu, F., Khouadjia, M., Come, E., Trepanier, M. & Oukhellou, L. Short & long term forecasting of multimodal transport passenger flows with machine learning methods. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems 560566 (IEEE, 2017).

  • Evans, R. & Gao, J. DeepMind AI reduces Google data centre cooling bill by 40%. DeepMind https://www.deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40 (2016).

  • Roman, N. D., Bre, F., Fachinotti, V. D. & Lamberts, R. Application and characterization of metamodels based on artificial neural networks for building performance simulation: a systematic review. Energy Build. 217, 109972 (2020).

    Article

    Google Scholar

  • Irrgang, C. et al. Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. Nat. Mach. Intell. 3, 667674 (2021).

    Article

    Google Scholar

  • Jenssen, R. et al. Automatic autonomous vision-based power line inspection: a review of current status and the potential role of deep learning. Int. J. Electr. Power Energy Syst. 99, 107120 (2018).

    Article

    Google Scholar

  • Rudin, C. et al. Interpretable machine learning: fundamental principles and 10 grand challenges. Stat. Surv. 16, 185 (2022).

    Article

    Google Scholar

  • Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521, 452459 (2015).

    CAS
    Article

    Google Scholar

  • Willard, J., Jia, X., Xu, S., Steinbach, M. & Kumar, V. Integrating physics-based modeling with machine learning: a survey. Preprint at https://arxiv.org/abs/2003.04919 (2020).

  • Zhuang, F. et al. A comprehensive survey on transfer learning. Proc. IEEE 109, 4376 (2020).

    Article

    Google Scholar

  • Adams-Progar, A., Fink, G.A.,Walker, E. & Llewellyn, D. in Security and Privacy in CyberPhysical Systems: Foundations, Principles and Applications (eds Song, H. et al.) Ch. 18 (Wiley, 2017); https://doi.org/10.1002/9781119226079.ch18

  • Charles, H. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).

    Article

    Google Scholar

  • Herweijer, C., Combes, B. & Gillham, J. How AI Can Enable a Sustainable Future (Microsoft & PWC, 2018); https://www.pwc.co.uk/services/sustainability-climate-change/insights/how-ai-future-can-enable-sustainable-future.html

  • Climate AI: How Artificial Intelligence Can Power Your Climate Action Strategy (Capgemini, 2020); https://www.capgemini.com/research/climate-ai/

  • Degot, C., Duranton, S., Frdeau, M. & Hutchinson, R. Reduce carbon and costs with the power of AI. BCG https://www.bcg.com/en-us/publications/2021/ai-to-reduce-carbon-emissions (2021).

  • Azevedo, I. M. L. Consumer end-use energy efficiency and rebound effects. Annu. Rev. Environ. Resour. 39, 393418 (2014).

    Article

    Google Scholar

  • Lange, S., Pohl, J. & Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 176, 106760 (2020).

    Article

    Google Scholar

  • Anderson, J. M. et al. Autonomous Vehicle Technology: A Guide for Policymakers (RAND Corporation, 2016); https://doi.org/10.7249/RR443-2

  • Creutzig, F. et al. Leveraging digitalization for sustainability in urban transport. Glob. Sustain. 2, e14 (2019).

    Article

    Google Scholar

  • Wadud, Z., MacKenzie, D. & Leiby, P. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles. Transport. Res. A 86, 118 (2016).

    Google Scholar

  • Chase, N., Maples, J. & Schipper, M. Autonomous Vehicles: Uncertainties and Energy Implications (EIA, 2018); https://www.eia.gov/outlooks/aeo/av.php

  • Arthur, W. B. Competing technologies, increasing returns, and lock-in by historical events. Econ. J. 99, 116131 (1989).

    Article

    Google Scholar

  • Cox, E., Royston, S. & Selby, J. Impact of Non-Energy Policies on Energy Systems (UK Energy Research Centre, 2016); https://ukerc.ac.uk/publications/impact-of-non-energy-policies-on-energy-systems/

  • Stilgoe, J., Owen, R. & Macnaghten, P. Developing a framework for responsible innovation. Res. Policy 42, 15681580 (2013).

    Article

    Google Scholar

  • Jirotka, M., Grimpe, B., Stahl, B., Eden, G. & Hartswood, M. Responsible research and innovation in the digital age. Commun. ACM 60, 6268 (2017).

    Article

    Google Scholar

  • Itten, R. et al. Digital transformation-life cycle assessment of digital services, multifunctional devices and cloud computing. Int. J. Life Cycle Assess. 25, 20932098 (2020).

    Article

    Google Scholar

  • Coroam, V. C., Bergmark, P., Hjer, M. & Malmodin, J. A methodology for assessing the environmental effects induced by ICT services: part I. Single services. In Proc. 7th International Conference on ICT for Sustainability 3645 (ACM, 2020).

  • Bergmark, P., Coroam, V. C., Hjer, M. & Donovan, C. A Methodology for assessing the environmental effects induced by ICT services: part I. Multiple services and companies. In Proc. 7th International Conference on ICT for Sustainability 4655 (ACM, 2020).

  • Haataja, M. & Bryson, J. J. What costs should we expect from the EUs AI Act? Preprint at SocArXiv https://osf.io/preprints/socarxiv/8nzb4 (2021).

  • Mytton, D. Hiding greenhouse gas emissions in the cloud. Nat. Clim. Change 10, 701701 (2020).

    Article

    Google Scholar

  • Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts (European Commission, 2021); https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

  • Hilbert, M. Big data for development: a review of promises and challenges. Dev. Policy Rev. 34, 135174 (2016).

    Article

    Google Scholar

  • Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. A survey on bias and fairness in machine learning. in ACM Computing Surveys Vol. 54, 135 (ACM, 2021).

  • Bondi, E., Xu, L., Acosta-Navas, D. & Killian, J. A. Envisioning communities: a participatory approach towards AI for social good. In Proc. 2021 AAAI/ACM Conference on AI, Ethics, and Society 425436 (ACM, 2021).

  • Pinch, T. J. & Bijker, W. E. The social construction of facts and artefacts: or how the sociology of science and the sociology of technology might benefit each other. Soc. Stud. Sci. 14, 399441 (1984).

    Article

    Google Scholar

  • Klein, H. K. & Lee Kleinman, D. The social construction of technology: structural considerations. Sci. Technol. Human Values 27, 2852 (2002).

    Article

    Google Scholar

  • www.actusduweb.com
    Suivez Actusduweb sur Google News


    Ce site utilise des cookies pour améliorer votre expérience. Nous supposerons que cela vous convient, mais vous pouvez vous désinscrire si vous le souhaitez. J'accepte Lire la suite