Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams – Scientific Reports

  • Bostanmaneshrad, F. et al. Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin. Sci. Total Environ. 639, 15881600. https://doi.org/10.1016/j.scitotenv.2018.05.244 (2018).

    ADS
    CAS
    Article
    PubMed

    Google Scholar

  • Noori, R., Berndtsson, R., Hosseinzadeh, M., Adamowski, J. F. & Abyaneh, M. R. A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ. Pollut. 244, 575587. https://doi.org/10.1016/j.envpol.2018.10.076 (2019).

    CAS
    Article
    PubMed

    Google Scholar

  • Ramezani, M., Noori, R., Hooshyaripor, F., Deng, Z. & Sarang, A. Numerical modelling-based comparison of longitudinal dispersion coefficient formulas for solute transport in rivers. Hydrol. Sci. J. 64(7), 808819. https://doi.org/10.1080/02626667.2019.1605240 (2019).

    Article

    Google Scholar

  • Abolfathi, S., Cook, S., Yeganeh-Bakhtiary, A., Borzooei, S. & Pearson, J. M. Microplastics transport and mixing mechanisms in the nearshore region. Coast. Eng. Proc. https://doi.org/10.9753/icce.v36v.papers.63 (2020).

    Article

    Google Scholar

  • Rutherford, J. C. River Mixing 347 (Wiley, 1994).

    Google Scholar

  • Abolfathi, S. & Pearson, J. M. Application of smoothed particle hydrodynamics (SPH) in nearshore mixing: A comparison to laboratory data. Coast. Eng. Proc. https://doi.org/10.9753/icce.v35.currents.16 (2017).

    Article

    Google Scholar

  • Cook, S. et al. Longitudinal dispersion of microplastics in aquatic flows using fluorometric techniques. Water Res. 170, 115337. https://doi.org/10.1016/j.watres.2019.115337 (2020).

    CAS
    Article
    PubMed

    Google Scholar

  • Cheme, E. K. & Mazaheri, M. The effect of neglecting spatial variations of the parameters in pollutant transport modeling in rivers. Environ. Fluid Mech. 21(3), 587603. https://doi.org/10.1007/s10652-021-09787-5 (2021).

    CAS
    Article

    Google Scholar

  • Fischer, H. B. The mechanics of dispersion in natural streams. J. Hydraul. Div. 93(6), 187216. https://doi.org/10.1061/JYCEAJ.0001706 (1967).

    Article

    Google Scholar

  • Fischer, H.B. Methods for Predicting Dispersion Coefficients in Natural Streams: With Applications to Lower Reaches of the Green and Duwamish Rivers, Washington, vol. 582. (US Government Printing Office, 1968).

  • Deng, Z. Q., Bengtsson, L., Singh, V. P. & Adrian, D. D. Longitudinal dispersion coefficient in single-channel streams. J. Hydraul. Eng. 128(10), 901916. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(901) (2002).

    Article

    Google Scholar

  • Noori, R. et al. Reliability of functional forms for calculation of longitudinal dispersion coefficient in rivers. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.148394 (2021).

    Article
    PubMed

    Google Scholar

  • Seo, I. W. & Cheong, T. S. Predicting longitudinal dispersion coefficient in natural streams. J. Hydraul. Eng. 124(1), 2532. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(25) (1998).

    Article

    Google Scholar

  • Nezu, I., Tominaga, A. & Nakagawa, H. Field measurements of secondary currents in straight rivers. J. Hydraul. Eng. 119(5), 598614. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:5(598) (1993).

    Article

    Google Scholar

  • Deng, Z. Q. & Singh, V. P. Mechanism and conditions for change in channel pattern. J. Hydraul. Res. 37(4), 465478. https://doi.org/10.1080/00221686.1999.9628263 (1999).

    Article

    Google Scholar

  • Marion, A. & Zaramella, M. Effects of velocity gradients and secondary flow on the dispersion of solutes in a meandering channel. J. Hydraul. Eng. 132(12), 12951302. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:12(1295) (2006).

    Article

    Google Scholar

  • Bashitialshaaer, R. et al. Sinuosity effects on longitudinal dispersion coefficient. Int. J. Sustain. Water Environ. Syst. 2(2), 7784 (2011).

    Google Scholar

  • Nikora, V. & Roy, A. G. Secondary flows in rivers: Theoretical framework, recent advances, and current challenges. Gravel Bed Rivers Process. Tools Environ. https://doi.org/10.1002/9781119952497.ch1 (2012).

    Article

    Google Scholar

  • Kii, . Modeling monthly evaporation using two different neural computing techniques. Irrig. Sci. 27(5), 417430. https://doi.org/10.1007/s00271-009-0158-z (2009).

    Article

    Google Scholar

  • Khatibi, R., Ghorbani, M. A., Kashani, M. H. & Kisi, O. Comparison of three artificial intelligence techniques for discharge routing. J. Hydrol. 403(34), 201212. https://doi.org/10.1016/j.jhydrol.2011.03.007 (2011).

    ADS
    Article

    Google Scholar

  • Abolfathi, S., Yeganeh-Bakhtiary, A., Hamze-Ziabari, S. M. & Borzooei, S. Wave runup prediction using M5 model tree algorithm. Ocean Eng. 112, 7681. https://doi.org/10.1016/j.oceaneng.2015.12.016 (2016).

    Article

    Google Scholar

  • Granata, F., Papirio, S., Esposito, G., Gargano, R. & De Marinis, G. Machine learning algorithms for the forecasting of wastewater quality indicators. Water 9(2), 105. https://doi.org/10.3390/w9020105 (2017).

    CAS
    Article

    Google Scholar

  • Jaramillo, F. et al. On-line estimation of the aerobic phase length for partial nitrification processes in SBR based on features extraction and SVM classification. Chem. Eng. J. 331, 114123. https://doi.org/10.1016/j.cej.2017.07.185 (2018).

    CAS
    Article

    Google Scholar

  • Borzooei, S. et al. Application of unsupervised learning and process simulation for energy optimization of a WWTP under various weather conditions. Water Sci. Technol. 81(8), 15411551. https://doi.org/10.2166/wst.2020.220 (2020).

    CAS
    Article
    PubMed

    Google Scholar

  • Kamrava, S., Im, J., de Barros, F. P. & Sahimi, M. Estimating dispersion coefficient in flow through heterogeneous porous media by a deep convolutional neural network. Geophys. Res. Lett. 48(18), e2021GL094443. https://doi.org/10.1029/2021GL094443 (2021).

    ADS
    Article

    Google Scholar

  • Noori, R., Karbassi, A. R., Ashrafi, K., Ardestani, M. & Mehrdadi, N. Development and application of reduced-order neural network model based on proper orthogonal decomposition for BOD 5 monitoring: Active and online prediction. Environ. Prog. Sustain. Energy 32(1), 120127. https://doi.org/10.1002/ep.10611 (2013).

    CAS
    Article

    Google Scholar

  • Noori, R., Farokhnia, A., Morid, S. & Riahi Madvar, H. Effect of input variables preprocessing in artificial neural network on monthly flow prediction by PCA and wavelet transformation. J. Water Wastewater 69, 1322 (2009) (In Persian).

    Google Scholar

  • Tayfur, G. & Singh, V. P. Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. J. Hydraul. Eng. 131(11), 9911000. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:11(991) (2005).

    Article

    Google Scholar

  • Toprak, Z. F., Hamidi, N., Kisi, O. & Gerger, R. Modeling dimensionless longitudinal dispersion coefficient in natural streams using artificial intelligence methods. KSCE J. Civ. Eng. 18(2), 718730. https://doi.org/10.1007/s12205-014-0089-y (2014).

    Article

    Google Scholar

  • Parsaie, A., Emamgholizadeh, S., Azamathulla, H. M. & Haghiabi, A. H. ANFIS-based PCA to predict the longitudinal dispersion coefficient in rivers. Int. J. Hydrol. Sci. Technol. 8(4), 410424. https://doi.org/10.1504/IJHST.2018.095537 (2018).

    Article

    Google Scholar

  • Azar, N. A., Milan, S. G. & Kayhomayoon, Z. The prediction of longitudinal dispersion coefficient in natural streams using LS-SVM and ANFIS optimized by Harris hawk optimization algorithm. J. Contam. Hydrol. 240, 103781. https://doi.org/10.1016/j.jconhyd.2021.103781 (2021).

    CAS
    Article

    Google Scholar

  • Noori, R. et al. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 401(34), 177189. https://doi.org/10.1016/j.jhydrol.2011.02.021 (2011).

    ADS
    Article

    Google Scholar

  • Tayfur, G. Fuzzy, ANN, and regression models to predict longitudinal dispersion coefficient in natural streams. Hydrol. Res. 37(2), 143164. https://doi.org/10.2166/nh.2006.0012 (2006).

    Article

    Google Scholar

  • Toprak, Z. F. & Cigizoglu, H. K. Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods. Hydrol. Process. Int. J. 22(20), 41064129. https://doi.org/10.1002/hyp.7012 (2008).

    ADS
    Article

    Google Scholar

  • Toprak, Z. F. & Savci, M. E. Longitudinal dispersion coefficient modeling in natural channels using fuzzy logic. Clean: Soil, Air, Water 35(6), 626637. https://doi.org/10.1002/clen.200700122 (2007).

    CAS
    Article

    Google Scholar

  • Piotrowski, A. P., Rowinski, P. M. & Napiorkowski, J. J. Comparison of evolutionary computation techniques for noise injected neural network training to estimate longitudinal dispersion coefficients in rivers. Expert Syst. Appl. 39(1), 13541361. https://doi.org/10.1016/j.eswa.2011.08.016 (2012).

    Article

    Google Scholar

  • Sahay, R. R. Predicting longitudinal dispersion coefficients in sinuous rivers by genetic algorithm. J. Hydrol. Hydromech. 61(3), 214. https://doi.org/10.2478/johh-2013-0028 (2013).

    Article

    Google Scholar

  • Najafzadeh, M. & Tafarojnoruz, A. Evaluation of neuro-fuzzy GMDH-based particle swarm optimization to predict longitudinal dispersion coefficient in rivers. Environ. Earth Sci. 75(2), 157. https://doi.org/10.1007/s12665-015-4877-6 (2016).

    Article

    Google Scholar

  • Noori, R., Ghiasi, B., Sheikhian, H. & Adamowski, J. F. Estimation of the dispersion coefficient in natural rivers using a granular computing model. J. Hydraul. Eng. 143(5), 04017001. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001276 (2017).

    Article

    Google Scholar

  • Kargar, K. et al. Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms. Eng. Appl. Comput. Fluid Mech. 14(1), 311322. https://doi.org/10.1080/19942060.2020.1712260 (2020).

    Article

    Google Scholar

  • Riahi-Madvar, H., Dehghani, M., Parmar, K. S., Nabipour, N. & Shamshirband, S. Improvements in the explicit estimation of pollutant dispersion coefficient in rivers by subset selection of maximum dissimilarity hybridized with ANFIS-firefly algorithm (FFA). IEEE Access 8, 6031460337. https://doi.org/10.1109/ACCESS.2020.2979927 (2020).

    Article

    Google Scholar

  • Noori, R., Deng, Z., Kiaghadi, A. & Kachoosangi, F. T. How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers?. J. Hydraul. Eng. 142(1), 04015039. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001062 (2016).

    Article

    Google Scholar

  • Ghiasi, B., Sheikhian, H., Zeynolabedin, A. & Niksokhan, M. H. Granular computingneural network model for prediction of longitudinal dispersion coefficients in rivers. Water Sci. Technol. 80(10), 18801892. https://doi.org/10.2166/wst.2020.006 (2019).

    Article
    PubMed

    Google Scholar

  • Montanari, A. & Brath, A. A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resour. Res. 40(1), W01106. https://doi.org/10.1029/2003WR002540 (2004).

    ADS
    Article

    Google Scholar

  • Beven, K. & Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 6(3), 279298. https://doi.org/10.1002/hyp.3360060305 (1992).

    ADS
    Article

    Google Scholar

  • Feyen, L., Vrugt, J. A., Nuallin, B. ., van der Knijff, J. & De Roo, A. Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model. J. Hydrol. 332(34), 276289. https://doi.org/10.1016/j.jhydrol.2006.07.004 (2007).

    ADS
    Article

    Google Scholar

  • Renard, B., Kavetski, D., Kuczera, G., Thyer, M. & Franks, S. W. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res. 46(5), W05521. https://doi.org/10.1029/2009WR008328 (2010).

    ADS
    Article

    Google Scholar

  • McMillan, H., Jackson, B., Clark, M., Kavetski, D. & Woods, R. Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models. J. Hydrol. 400(12), 8394. https://doi.org/10.1016/j.jhydrol.2011.01.026 (2011).

    ADS
    Article

    Google Scholar

  • Dobler, C., Hagemann, S., Wilby, R. L. & Sttter, J. Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed. Hydrol. Earth Syst. Sci. 16(11), 43434360. https://doi.org/10.5194/hess-16-4343-2012 (2012).

    ADS
    Article

    Google Scholar

  • Hattermann, F. F. et al. Sources of uncertainty in hydrological climate impact assessment: A cross-scale study. Environ. Res. Lett. 13(1), 015006. https://doi.org/10.1088/1748-9326/aa9938 (2018).

    ADS
    Article

    Google Scholar

  • Moges, E., Demissie, Y., Larsen, L. & Yassin, F. Review: Sources of hydrological model uncertainties and advances in their analysis. Water 13(1), 28. https://doi.org/10.3390/w13010028 (2020).

    Article

    Google Scholar

  • Sheikhian, H., Delavar, M. R. & Stein, A. A GIS-based multi-criteria seismic vulnerability assessment using the integration of granular computing rule extraction and artificial neural networks. Trans. GIS 21(6), 12371259. https://doi.org/10.1111/tgis.12274 (2017).

    Article

    Google Scholar

  • Yao, Y. A partition model of granular computing. In Transactions on Rough Sets I 232253 (Springer, 2004). https://doi.org/10.1007/978-3-540-27794-1_11.

  • Sheikhian, H., Delavar, M. R. & Stein, A. Integrated estimation of seismic physical vulnerability of Tehran using rule based granular computing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(3), 187. https://doi.org/10.5194/isprsarchives-XL-3-W3-187-2015 (2015).

    Article

    Google Scholar

  • Khamespanah, F., Delavar, M. R., Moradi, M. & Sheikhian, H. A GIS-based multi-criteria evaluation framework for uncertainty reduction in earthquake disaster management using granular computing. Geod. Cartogr. 42(2), 5868. https://doi.org/10.3846/20296991.2016.1199139 (2016).

    Article

    Google Scholar

  • Noori, R. et al. Granular computing for prediction of scour below spillways. Water Resour. Manag. 31(1), 313326. https://doi.org/10.1007/s11269-016-1526-0 (2017).

    Article

    Google Scholar

  • Deng, Z. Q., Singh, V. P. & Bengtsson, L. Longitudinal dispersion coefficient in straight rivers. J. Hydraul. Eng. 127(11), 919927. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(919) (2001).

    Article

    Google Scholar

  • Barati Moghaddam, M., Mazaheri, M. & MohammadVali Samani, J. A comprehensive one-dimensional numerical model for solute transport in rivers. Hydrol. Earth Syst. Sci. 21(1), 99116. https://doi.org/10.5194/hess-21-99-2017 (2017).

    ADS
    Article

    Google Scholar

  • Kilpatrick, F. A. & Wilson, J. F. Measurement of Time of Travel in Streams by Dye Tracing vol. 3. (US Government Printing Office, 1989).

  • Iwasa, Y. & Aya, S. Transverse mixing in a river with complicated channel geometry. Bull. Disaster Prev. Res. Inst. 41(3), 129175 (1991).

    Google Scholar

  • Liu, H. Predicting dispersion coefficient of streams. J. Environ. Eng. Div. 103(1), 5969. https://doi.org/10.1061/JEEGAV.0000605 (1977).

    Article

    Google Scholar

  • Smith, R. Physics of Dispersion coastal and estuarine pollutionmethods and solutions technical sessions, Scottish Hydraulic Study Group, One day seminar 3rd Aprill, Glasgow (1992).

  • Taylor, G. I. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 223(1155), 446468. https://doi.org/10.1098/rspa.1954.0130 (1954).

    ADS
    CAS
    Article

    Google Scholar

  • Taylor, G. I. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 219(1137), 186203. https://doi.org/10.1098/rspa.1953.0139 (1953).

    ADS
    CAS
    Article

    Google Scholar

  • Elder, J. The dispersion of marked fluid in turbulent shear flow. J. Fluid Mech. 5(4), 544560. https://doi.org/10.1017/S0022112059000374 (1959).

    ADS
    MathSciNet
    Article
    MATH

    Google Scholar

  • Fischer, H. B. Longitudinal dispersion in laboratory and natural streams. Calif. Inst. Technol. https://doi.org/10.7907/Z9F769HC (1966).

    Article

    Google Scholar

  • Carr, M. L. & Rehmann, C. R. Measuring the dispersion coefficient with acoustic Doppler current profilers. J. Hydraul. Eng. 133(8), 977982. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(977) (2007).

    Article

    Google Scholar

  • Papadimitrakis, I. & Orphanos, I. Longitudinal dispersion characteristics of rivers and natural streams in Greece. Water Air Soil Pollut. Focus 4(4), 289305. https://doi.org/10.1023/B:WAFO.0000044806.98243.97 (2004).

    Article

    Google Scholar

  • Fischer, H. B., List, J. E., Koh, C. R., Imberger, J. & Brooks, N. H. Mixing in Inland and Coastal Waters (Academic Press, 1979).

    Google Scholar

  • Balf, M. R., Noori, R., Berndtsson, R., Ghaemi, A. & Ghiasi, B. Evolutionary polynomial regression approach to predict longitudinal dispersion coefficient in rivers. J. Water Supply Res. Technol. AQUA 67(5), 447457. https://doi.org/10.2166/aqua.2018.021 (2018).

    Article

    Google Scholar

  • Riahi-Madvar, H., Dehghani, M., Seifi, A. & Singh, V. P. Pareto optimal multigene genetic programming for prediction of longitudinal dispersion coefficient. Water Resour. Manag. 33(3), 905921. https://doi.org/10.1007/s11269-018-2139-6 (2019).

    Article

    Google Scholar

  • Calandro, A. J. Time of travel of solutes in Louisiana streams. Louisiana Department of Public Works Water Resources Technical Report (No. 17). Accessed 14 Oct 2020. https://wise.er.usgs.gov/dp/pdfs/TR17.pdf (USGS, 1978).

  • Yao, Y.Y. On modeling data mining with granular computing. In 25th Annual International Computer Software and Applications Conference. COMPSAC 2001 638643. (IEEE, 2001). https://doi.org/10.1109/CMPSAC.2001.960680.

  • Yao, J. T. & Yao, Y. Y. Induction of classification rules by granular computing. In International Conference on Rough Sets and Current Trends in Computing 331338. (Springer, 2002). https://doi.org/10.1007/3-540-45813-1_43.

  • Yao, Y. Y. & Zhong, N. Granular computing using information tables. In Data Mining, Rough Sets and Granular Computing. Studies in Fuzziness and Soft Computing, vol. 95 (eds. Lin T. Y., Yao Y. Y. & Zadeh L.A.) (Physica, 2002). https://doi.org/10.1007/978-3-7908-1791-1_5.

  • Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341356. https://doi.org/10.1007/BF01001956 (1982).

    Article
    MATH

    Google Scholar

  • Haykin, S. Neural Networks and Learning Machines 3rd edn. (Prentice Hall, 2008).

    Google Scholar

  • Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).

    Book

    Google Scholar

  • Srivastav, R. K., Sudheer, K. P. & Chaubey, I. A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour. Res. https://doi.org/10.1029/2006WR005352 (2007).

    Article

    Google Scholar

  • Abbaspour, K. C. et al. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 333(24), 413430. https://doi.org/10.1016/j.jhydrol.2006.09.014 (2007).

    ADS
    Article

    Google Scholar

  • Bello, R. et al. (eds) Granular Computing: At the Junction of Rough Sets and Fuzzy Sets Vol. 224 (Springer, 2007).

    Google Scholar

  • Koh, Y. S. & Rountree, N. (eds) Rare Association Rule Mining and Knowledge Discovery: Technologies for Infrequent and Critical Event Detection: Technologies for Infrequent and Critical Event Detection Vol. 3 (IGI Global, 2009).

    Google Scholar

  • Etemad-Shahidi, A. & Taghipour, M. Predicting longitudinal dispersion coefficient in natural streams using M5 model tree. J. Hydraul. Eng. 138(6), 542554. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000550 (2012).

    Article

    Google Scholar

  • Sahay, R. R. & Dutta, S. Prediction of longitudinal dispersion coefficients in natural rivers using genetic algorithm. Hydrol. Res. 40(6), 544552. https://doi.org/10.2166/nh.2009.014 (2009).

    Article

    Google Scholar

  • Najafzadeh, M. et al. A comprehensive uncertainty analysis of model-estimated longitudinal and lateral dispersion coefficients in open channels. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126850 (2021).

    Article

    Google Scholar

  • Dehghani, M., Zargar, M., Riahi-Madvar, H. & Memarzadeh, R. A novel approach for longitudinal dispersion coefficient estimation via tri-variate archimedean copulas. J. Hydrol. 584, 124662. https://doi.org/10.1016/j.jhydrol.2020.124662 (2020).

    Article

    Google Scholar

  • Memarzadeh, R. et al. A novel equation for longitudinal dispersion coefficient prediction based on the hybrid of SSMD and whale optimization algorithm. Sci. Total Environ. 716, 137007. https://doi.org/10.1016/j.scitotenv.2020.137007 (2020).

    ADS
    CAS
    Article
    PubMed

    Google Scholar

  • Noori, R., Karbassi, A., Farokhnia, A. & Dehghani, M. Predicting the longitudinal dispersion coefficient using support vector machine and adaptive neuro-fuzzy inference system techniques. Environ. Eng. Sci. 26(10), 15031510. https://doi.org/10.1089/ees.2008.0360 (2009).

    CAS
    Article

    Google Scholar

  • www.actusduweb.com
    Suivez Actusduweb sur Google News


    Ce site utilise des cookies pour améliorer votre expérience. Nous supposerons que cela vous convient, mais vous pouvez vous désinscrire si vous le souhaitez. J'accepte Lire la suite