Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams – Scientific Reports
Bostanmaneshrad, F. et al. Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin. Sci. Total Environ. 639, 15881600. https://doi.org/10.1016/j.scitotenv.2018.05.244 (2018).
Google Scholar
Noori, R., Berndtsson, R., Hosseinzadeh, M., Adamowski, J. F. & Abyaneh, M. R. A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ. Pollut. 244, 575587. https://doi.org/10.1016/j.envpol.2018.10.076 (2019).
Google Scholar
Ramezani, M., Noori, R., Hooshyaripor, F., Deng, Z. & Sarang, A. Numerical modelling-based comparison of longitudinal dispersion coefficient formulas for solute transport in rivers. Hydrol. Sci. J. 64(7), 808819. https://doi.org/10.1080/02626667.2019.1605240 (2019).
Google Scholar
Abolfathi, S., Cook, S., Yeganeh-Bakhtiary, A., Borzooei, S. & Pearson, J. M. Microplastics transport and mixing mechanisms in the nearshore region. Coast. Eng. Proc. https://doi.org/10.9753/icce.v36v.papers.63 (2020).
Google Scholar
Rutherford, J. C. River Mixing 347 (Wiley, 1994).
Abolfathi, S. & Pearson, J. M. Application of smoothed particle hydrodynamics (SPH) in nearshore mixing: A comparison to laboratory data. Coast. Eng. Proc. https://doi.org/10.9753/icce.v35.currents.16 (2017).
Google Scholar
Cook, S. et al. Longitudinal dispersion of microplastics in aquatic flows using fluorometric techniques. Water Res. 170, 115337. https://doi.org/10.1016/j.watres.2019.115337 (2020).
Google Scholar
Cheme, E. K. & Mazaheri, M. The effect of neglecting spatial variations of the parameters in pollutant transport modeling in rivers. Environ. Fluid Mech. 21(3), 587603. https://doi.org/10.1007/s10652-021-09787-5 (2021).
Google Scholar
Fischer, H. B. The mechanics of dispersion in natural streams. J. Hydraul. Div. 93(6), 187216. https://doi.org/10.1061/JYCEAJ.0001706 (1967).
Google Scholar
Fischer, H.B. Methods for Predicting Dispersion Coefficients in Natural Streams: With Applications to Lower Reaches of the Green and Duwamish Rivers, Washington, vol. 582. (US Government Printing Office, 1968).
Deng, Z. Q., Bengtsson, L., Singh, V. P. & Adrian, D. D. Longitudinal dispersion coefficient in single-channel streams. J. Hydraul. Eng. 128(10), 901916. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(901) (2002).
Google Scholar
Noori, R. et al. Reliability of functional forms for calculation of longitudinal dispersion coefficient in rivers. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2021.148394 (2021).
Google Scholar
Seo, I. W. & Cheong, T. S. Predicting longitudinal dispersion coefficient in natural streams. J. Hydraul. Eng. 124(1), 2532. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(25) (1998).
Google Scholar
Nezu, I., Tominaga, A. & Nakagawa, H. Field measurements of secondary currents in straight rivers. J. Hydraul. Eng. 119(5), 598614. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:5(598) (1993).
Google Scholar
Deng, Z. Q. & Singh, V. P. Mechanism and conditions for change in channel pattern. J. Hydraul. Res. 37(4), 465478. https://doi.org/10.1080/00221686.1999.9628263 (1999).
Google Scholar
Marion, A. & Zaramella, M. Effects of velocity gradients and secondary flow on the dispersion of solutes in a meandering channel. J. Hydraul. Eng. 132(12), 12951302. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:12(1295) (2006).
Google Scholar
Bashitialshaaer, R. et al. Sinuosity effects on longitudinal dispersion coefficient. Int. J. Sustain. Water Environ. Syst. 2(2), 7784 (2011).
Nikora, V. & Roy, A. G. Secondary flows in rivers: Theoretical framework, recent advances, and current challenges. Gravel Bed Rivers Process. Tools Environ. https://doi.org/10.1002/9781119952497.ch1 (2012).
Google Scholar
Kii, . Modeling monthly evaporation using two different neural computing techniques. Irrig. Sci. 27(5), 417430. https://doi.org/10.1007/s00271-009-0158-z (2009).
Google Scholar
Khatibi, R., Ghorbani, M. A., Kashani, M. H. & Kisi, O. Comparison of three artificial intelligence techniques for discharge routing. J. Hydrol. 403(34), 201212. https://doi.org/10.1016/j.jhydrol.2011.03.007 (2011).
Google Scholar
Abolfathi, S., Yeganeh-Bakhtiary, A., Hamze-Ziabari, S. M. & Borzooei, S. Wave runup prediction using M5 model tree algorithm. Ocean Eng. 112, 7681. https://doi.org/10.1016/j.oceaneng.2015.12.016 (2016).
Google Scholar
Granata, F., Papirio, S., Esposito, G., Gargano, R. & De Marinis, G. Machine learning algorithms for the forecasting of wastewater quality indicators. Water 9(2), 105. https://doi.org/10.3390/w9020105 (2017).
Google Scholar
Jaramillo, F. et al. On-line estimation of the aerobic phase length for partial nitrification processes in SBR based on features extraction and SVM classification. Chem. Eng. J. 331, 114123. https://doi.org/10.1016/j.cej.2017.07.185 (2018).
Google Scholar
Borzooei, S. et al. Application of unsupervised learning and process simulation for energy optimization of a WWTP under various weather conditions. Water Sci. Technol. 81(8), 15411551. https://doi.org/10.2166/wst.2020.220 (2020).
Google Scholar
Kamrava, S., Im, J., de Barros, F. P. & Sahimi, M. Estimating dispersion coefficient in flow through heterogeneous porous media by a deep convolutional neural network. Geophys. Res. Lett. 48(18), e2021GL094443. https://doi.org/10.1029/2021GL094443 (2021).
Google Scholar
Noori, R., Karbassi, A. R., Ashrafi, K., Ardestani, M. & Mehrdadi, N. Development and application of reduced-order neural network model based on proper orthogonal decomposition for BOD 5 monitoring: Active and online prediction. Environ. Prog. Sustain. Energy 32(1), 120127. https://doi.org/10.1002/ep.10611 (2013).
Google Scholar
Noori, R., Farokhnia, A., Morid, S. & Riahi Madvar, H. Effect of input variables preprocessing in artificial neural network on monthly flow prediction by PCA and wavelet transformation. J. Water Wastewater 69, 1322 (2009) (In Persian).
Tayfur, G. & Singh, V. P. Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. J. Hydraul. Eng. 131(11), 9911000. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:11(991) (2005).
Google Scholar
Toprak, Z. F., Hamidi, N., Kisi, O. & Gerger, R. Modeling dimensionless longitudinal dispersion coefficient in natural streams using artificial intelligence methods. KSCE J. Civ. Eng. 18(2), 718730. https://doi.org/10.1007/s12205-014-0089-y (2014).
Google Scholar
Parsaie, A., Emamgholizadeh, S., Azamathulla, H. M. & Haghiabi, A. H. ANFIS-based PCA to predict the longitudinal dispersion coefficient in rivers. Int. J. Hydrol. Sci. Technol. 8(4), 410424. https://doi.org/10.1504/IJHST.2018.095537 (2018).
Google Scholar
Azar, N. A., Milan, S. G. & Kayhomayoon, Z. The prediction of longitudinal dispersion coefficient in natural streams using LS-SVM and ANFIS optimized by Harris hawk optimization algorithm. J. Contam. Hydrol. 240, 103781. https://doi.org/10.1016/j.jconhyd.2021.103781 (2021).
Google Scholar
Noori, R. et al. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 401(34), 177189. https://doi.org/10.1016/j.jhydrol.2011.02.021 (2011).
Google Scholar
Tayfur, G. Fuzzy, ANN, and regression models to predict longitudinal dispersion coefficient in natural streams. Hydrol. Res. 37(2), 143164. https://doi.org/10.2166/nh.2006.0012 (2006).
Google Scholar
Toprak, Z. F. & Cigizoglu, H. K. Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods. Hydrol. Process. Int. J. 22(20), 41064129. https://doi.org/10.1002/hyp.7012 (2008).
Google Scholar
Toprak, Z. F. & Savci, M. E. Longitudinal dispersion coefficient modeling in natural channels using fuzzy logic. Clean: Soil, Air, Water 35(6), 626637. https://doi.org/10.1002/clen.200700122 (2007).
Google Scholar
Piotrowski, A. P., Rowinski, P. M. & Napiorkowski, J. J. Comparison of evolutionary computation techniques for noise injected neural network training to estimate longitudinal dispersion coefficients in rivers. Expert Syst. Appl. 39(1), 13541361. https://doi.org/10.1016/j.eswa.2011.08.016 (2012).
Google Scholar
Sahay, R. R. Predicting longitudinal dispersion coefficients in sinuous rivers by genetic algorithm. J. Hydrol. Hydromech. 61(3), 214. https://doi.org/10.2478/johh-2013-0028 (2013).
Google Scholar
Najafzadeh, M. & Tafarojnoruz, A. Evaluation of neuro-fuzzy GMDH-based particle swarm optimization to predict longitudinal dispersion coefficient in rivers. Environ. Earth Sci. 75(2), 157. https://doi.org/10.1007/s12665-015-4877-6 (2016).
Google Scholar
Noori, R., Ghiasi, B., Sheikhian, H. & Adamowski, J. F. Estimation of the dispersion coefficient in natural rivers using a granular computing model. J. Hydraul. Eng. 143(5), 04017001. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001276 (2017).
Google Scholar
Kargar, K. et al. Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms. Eng. Appl. Comput. Fluid Mech. 14(1), 311322. https://doi.org/10.1080/19942060.2020.1712260 (2020).
Google Scholar
Riahi-Madvar, H., Dehghani, M., Parmar, K. S., Nabipour, N. & Shamshirband, S. Improvements in the explicit estimation of pollutant dispersion coefficient in rivers by subset selection of maximum dissimilarity hybridized with ANFIS-firefly algorithm (FFA). IEEE Access 8, 6031460337. https://doi.org/10.1109/ACCESS.2020.2979927 (2020).
Google Scholar
Noori, R., Deng, Z., Kiaghadi, A. & Kachoosangi, F. T. How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers?. J. Hydraul. Eng. 142(1), 04015039. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001062 (2016).
Google Scholar
Ghiasi, B., Sheikhian, H., Zeynolabedin, A. & Niksokhan, M. H. Granular computingneural network model for prediction of longitudinal dispersion coefficients in rivers. Water Sci. Technol. 80(10), 18801892. https://doi.org/10.2166/wst.2020.006 (2019).
Google Scholar
Montanari, A. & Brath, A. A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resour. Res. 40(1), W01106. https://doi.org/10.1029/2003WR002540 (2004).
Google Scholar
Beven, K. & Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 6(3), 279298. https://doi.org/10.1002/hyp.3360060305 (1992).
Google Scholar
Feyen, L., Vrugt, J. A., Nuallin, B. ., van der Knijff, J. & De Roo, A. Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model. J. Hydrol. 332(34), 276289. https://doi.org/10.1016/j.jhydrol.2006.07.004 (2007).
Google Scholar
Renard, B., Kavetski, D., Kuczera, G., Thyer, M. & Franks, S. W. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res. 46(5), W05521. https://doi.org/10.1029/2009WR008328 (2010).
Google Scholar
McMillan, H., Jackson, B., Clark, M., Kavetski, D. & Woods, R. Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models. J. Hydrol. 400(12), 8394. https://doi.org/10.1016/j.jhydrol.2011.01.026 (2011).
Google Scholar
Dobler, C., Hagemann, S., Wilby, R. L. & Sttter, J. Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed. Hydrol. Earth Syst. Sci. 16(11), 43434360. https://doi.org/10.5194/hess-16-4343-2012 (2012).
Google Scholar
Hattermann, F. F. et al. Sources of uncertainty in hydrological climate impact assessment: A cross-scale study. Environ. Res. Lett. 13(1), 015006. https://doi.org/10.1088/1748-9326/aa9938 (2018).
Google Scholar
Moges, E., Demissie, Y., Larsen, L. & Yassin, F. Review: Sources of hydrological model uncertainties and advances in their analysis. Water 13(1), 28. https://doi.org/10.3390/w13010028 (2020).
Google Scholar
Sheikhian, H., Delavar, M. R. & Stein, A. A GIS-based multi-criteria seismic vulnerability assessment using the integration of granular computing rule extraction and artificial neural networks. Trans. GIS 21(6), 12371259. https://doi.org/10.1111/tgis.12274 (2017).
Google Scholar
Yao, Y. A partition model of granular computing. In Transactions on Rough Sets I 232253 (Springer, 2004). https://doi.org/10.1007/978-3-540-27794-1_11.
Sheikhian, H., Delavar, M. R. & Stein, A. Integrated estimation of seismic physical vulnerability of Tehran using rule based granular computing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(3), 187. https://doi.org/10.5194/isprsarchives-XL-3-W3-187-2015 (2015).
Google Scholar
Khamespanah, F., Delavar, M. R., Moradi, M. & Sheikhian, H. A GIS-based multi-criteria evaluation framework for uncertainty reduction in earthquake disaster management using granular computing. Geod. Cartogr. 42(2), 5868. https://doi.org/10.3846/20296991.2016.1199139 (2016).
Google Scholar
Noori, R. et al. Granular computing for prediction of scour below spillways. Water Resour. Manag. 31(1), 313326. https://doi.org/10.1007/s11269-016-1526-0 (2017).
Google Scholar
Deng, Z. Q., Singh, V. P. & Bengtsson, L. Longitudinal dispersion coefficient in straight rivers. J. Hydraul. Eng. 127(11), 919927. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(919) (2001).
Google Scholar
Barati Moghaddam, M., Mazaheri, M. & MohammadVali Samani, J. A comprehensive one-dimensional numerical model for solute transport in rivers. Hydrol. Earth Syst. Sci. 21(1), 99116. https://doi.org/10.5194/hess-21-99-2017 (2017).
Google Scholar
Kilpatrick, F. A. & Wilson, J. F. Measurement of Time of Travel in Streams by Dye Tracing vol. 3. (US Government Printing Office, 1989).
Iwasa, Y. & Aya, S. Transverse mixing in a river with complicated channel geometry. Bull. Disaster Prev. Res. Inst. 41(3), 129175 (1991).
Liu, H. Predicting dispersion coefficient of streams. J. Environ. Eng. Div. 103(1), 5969. https://doi.org/10.1061/JEEGAV.0000605 (1977).
Google Scholar
Smith, R. Physics of Dispersion coastal and estuarine pollutionmethods and solutions technical sessions, Scottish Hydraulic Study Group, One day seminar 3rd Aprill, Glasgow (1992).
Taylor, G. I. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 223(1155), 446468. https://doi.org/10.1098/rspa.1954.0130 (1954).
Google Scholar
Taylor, G. I. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 219(1137), 186203. https://doi.org/10.1098/rspa.1953.0139 (1953).
Google Scholar
Elder, J. The dispersion of marked fluid in turbulent shear flow. J. Fluid Mech. 5(4), 544560. https://doi.org/10.1017/S0022112059000374 (1959).
Google Scholar
Fischer, H. B. Longitudinal dispersion in laboratory and natural streams. Calif. Inst. Technol. https://doi.org/10.7907/Z9F769HC (1966).
Google Scholar
Carr, M. L. & Rehmann, C. R. Measuring the dispersion coefficient with acoustic Doppler current profilers. J. Hydraul. Eng. 133(8), 977982. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:8(977) (2007).
Google Scholar
Papadimitrakis, I. & Orphanos, I. Longitudinal dispersion characteristics of rivers and natural streams in Greece. Water Air Soil Pollut. Focus 4(4), 289305. https://doi.org/10.1023/B:WAFO.0000044806.98243.97 (2004).
Google Scholar
Fischer, H. B., List, J. E., Koh, C. R., Imberger, J. & Brooks, N. H. Mixing in Inland and Coastal Waters (Academic Press, 1979).
Balf, M. R., Noori, R., Berndtsson, R., Ghaemi, A. & Ghiasi, B. Evolutionary polynomial regression approach to predict longitudinal dispersion coefficient in rivers. J. Water Supply Res. Technol. AQUA 67(5), 447457. https://doi.org/10.2166/aqua.2018.021 (2018).
Google Scholar
Riahi-Madvar, H., Dehghani, M., Seifi, A. & Singh, V. P. Pareto optimal multigene genetic programming for prediction of longitudinal dispersion coefficient. Water Resour. Manag. 33(3), 905921. https://doi.org/10.1007/s11269-018-2139-6 (2019).
Google Scholar
Calandro, A. J. Time of travel of solutes in Louisiana streams. Louisiana Department of Public Works Water Resources Technical Report (No. 17). Accessed 14 Oct 2020. https://wise.er.usgs.gov/dp/pdfs/TR17.pdf (USGS, 1978).
Yao, Y.Y. On modeling data mining with granular computing. In 25th Annual International Computer Software and Applications Conference. COMPSAC 2001 638643. (IEEE, 2001). https://doi.org/10.1109/CMPSAC.2001.960680.
Yao, J. T. & Yao, Y. Y. Induction of classification rules by granular computing. In International Conference on Rough Sets and Current Trends in Computing 331338. (Springer, 2002). https://doi.org/10.1007/3-540-45813-1_43.
Yao, Y. Y. & Zhong, N. Granular computing using information tables. In Data Mining, Rough Sets and Granular Computing. Studies in Fuzziness and Soft Computing, vol. 95 (eds. Lin T. Y., Yao Y. Y. & Zadeh L.A.) (Physica, 2002). https://doi.org/10.1007/978-3-7908-1791-1_5.
Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341356. https://doi.org/10.1007/BF01001956 (1982).
Google Scholar
Haykin, S. Neural Networks and Learning Machines 3rd edn. (Prentice Hall, 2008).
Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).
Google Scholar
Srivastav, R. K., Sudheer, K. P. & Chaubey, I. A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour. Res. https://doi.org/10.1029/2006WR005352 (2007).
Google Scholar
Abbaspour, K. C. et al. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 333(24), 413430. https://doi.org/10.1016/j.jhydrol.2006.09.014 (2007).
Google Scholar
Bello, R. et al. (eds) Granular Computing: At the Junction of Rough Sets and Fuzzy Sets Vol. 224 (Springer, 2007).
Koh, Y. S. & Rountree, N. (eds) Rare Association Rule Mining and Knowledge Discovery: Technologies for Infrequent and Critical Event Detection: Technologies for Infrequent and Critical Event Detection Vol. 3 (IGI Global, 2009).
Etemad-Shahidi, A. & Taghipour, M. Predicting longitudinal dispersion coefficient in natural streams using M5 model tree. J. Hydraul. Eng. 138(6), 542554. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000550 (2012).
Google Scholar
Sahay, R. R. & Dutta, S. Prediction of longitudinal dispersion coefficients in natural rivers using genetic algorithm. Hydrol. Res. 40(6), 544552. https://doi.org/10.2166/nh.2009.014 (2009).
Google Scholar
Najafzadeh, M. et al. A comprehensive uncertainty analysis of model-estimated longitudinal and lateral dispersion coefficients in open channels. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2021.126850 (2021).
Google Scholar
Dehghani, M., Zargar, M., Riahi-Madvar, H. & Memarzadeh, R. A novel approach for longitudinal dispersion coefficient estimation via tri-variate archimedean copulas. J. Hydrol. 584, 124662. https://doi.org/10.1016/j.jhydrol.2020.124662 (2020).
Google Scholar
Memarzadeh, R. et al. A novel equation for longitudinal dispersion coefficient prediction based on the hybrid of SSMD and whale optimization algorithm. Sci. Total Environ. 716, 137007. https://doi.org/10.1016/j.scitotenv.2020.137007 (2020).
Google Scholar
Noori, R., Karbassi, A., Farokhnia, A. & Dehghani, M. Predicting the longitudinal dispersion coefficient using support vector machine and adaptive neuro-fuzzy inference system techniques. Environ. Eng. Sci. 26(10), 15031510. https://doi.org/10.1089/ees.2008.0360 (2009).
Google Scholar