Simulations quantiques pionnières sur puces photoniques : une nouvelle ère dans l’informatique quantique

Modèle de simulateur quantique spatial synthétique

Un nouveau système développé par des chercheurs de l’Université de Rochester leur permet de mener des simulations quantiques dans un espace synthétique qui imite le monde physique en contrôlant la fréquence, ou la couleur, des photons intriqués quantiques au fil du temps. Crédit : Illustration de l’Université de Rochester / Michael Osadciw

Un système utilisant des dimensions synthétiques basées sur la photonique pourrait être utilisé pour aider à expliquer des phénomènes naturels complexes.

Des chercheurs de l’Université de Rochester ont mis au point un système de simulation quantique optique à l’échelle de la puce utilisant des

photon
Un photon est une particule de lumière. C’est l’unité de base de la lumière et des autres rayonnements électromagnétiques, et elle est responsable de la force électromagnétique, l’une des quatre forces fondamentales de la nature. Les photons n’ont pas de masse, mais ils ont de l’énergie et de la quantité de mouvement. Ils voyagent à la vitesse de la lumière dans le vide et peuvent avoir différentes longueurs d’onde, qui correspondent à différentes couleurs de lumière. Les photons peuvent également avoir différentes énergies, qui correspondent à différentes fréquences de lumière.

 » data-gt-translate-attributes= »[{ » attribute= » »>photon frequency to simulate complex natural phenomena at the quantum level, reducing the physical footprint and resource requirements of traditional methods. This innovation, heralding a quantum-correlated synthetic crystal, could pave the way for more complex future simulations.

Scientists have made an important step toward developing computers advanced enough to simulate complex natural phenomena at the quantum level. While these types of simulations are too cumbersome or outright impossible for classical computers to handle, photonics-based <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

quantum computing
Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

 » data-gt-translate-attributes= »[{ » attribute= » »>quantum computing systems could provide a solution.

A team of researchers from the University of Rochesters Hajim School of Engineering & Applied Sciences developed a new chip-scale optical quantum simulation system that could help make such a system feasible. The team, led by Qiang Lin, a professor of electrical and computer engineering and optics, published their findings on June 22 in the journal <span class="glossaryLink" aria-describedby="tt" data-cmtooltip="

Nature Photonics
<em>Nature Photonics</em> is a prestigious, peer-reviewed scientific journal that is published by the Nature Publishing Group. Launched in January 2007, the journal focuses on the field of photonics, which includes research into the science and technology of light generation, manipulation, and detection. Its content ranges from fundamental research to applied science, covering topics such as lasers, optical devices, photonics materials, and photonics for energy. In addition to research papers, <em>Nature Photonics</em> also publishes reviews, news, and commentary on significant developments in the photonics field. It is a highly respected publication and is widely read by researchers, academics, and professionals in the photonics and related fields.

 » data-gt-translate-attributes= »[{ » attribute= » »>Nature Photonics.

Lins team ran the simulations in a synthetic space that mimics the physical world by controlling the frequency, or color, of quantum entangled photons as time elapses. This approach differs from the traditional photonics-based computing methods in which the paths of photons are controlled, and also drastically reduces the physical footprint and resource requirements.

For the first time, we have been able to produce a quantum-correlated synthetic crystal, says Lin. Our approach significantly extends the dimensions of the synthetic space, enabling us to perform simulations of several quantum-scale phenomena such as random walks of quantum entangled photons.

The researchers say that this system can serve as a basis for more intricate simulations in the future.

Though the systems being simulated are well understood, this proof-of-principle experiment demonstrates the power of this new approach for scaling up to more complex simulations and computation tasks, something we are very excited to investigate in the future, says Usman Javid 23 PhD (optics), the lead author on the study.

Reference: Chip-scale simulations in a quantum-correlated synthetic space by Usman A. Javid, Raymond Lopez-Rios, Jingwei Ling, Austin Graf, Jeremy Staffa and Qiang Lin, 22 June 2023, Nature Photonics.
DOI: 10.1038/s41566-023-01236-7

Other coauthors from Lins group include Raymond Lopez-Rios, Jingwei Ling, Austin Graf, and Jeremy Staffa.

The project was supported with funding from the National Science Foundation, the Defense Threat Reduction Agencys Joint Science and Technology Office for Chemical and Biological Defense, and the Defense Advanced Research Projects Agency.

(function(d,s,id)var js,fjs=d.getElementsByTagName(s)[0];if(d.getElementById(id))return;js=d.createElement(s);js.id=id;js.src= »https://connect.facebook.net/en_US/sdk.js#xfbml= 1&version=v2.6″;fjs.parentNode.insertBefore(js,fjs);(document,’script’,’facebook-jssdk’));

www.actusduweb.com
Suivez Actusduweb sur Google News


Ce site utilise des cookies pour améliorer votre expérience. Nous supposerons que cela vous convient, mais vous pouvez vous désinscrire si vous le souhaitez. J'accepteLire la suite