#image_title

Potential and challenges of computing with molecular materials – Nature Materials

  • Rotman, D. Molecular computing. MIT Technology Review https://go.nature.com/3OSS3w1 (2000).

  • Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2010).

  • Carroll, R. L. & Gorman, C. B. The genesis of molecular electronics. Angew. Chem. Int. Ed. 41, 43784400 (2002).

    3.0.CO;2-A » data-track-action= »article reference » href= »https://doi.org/10.1002%2F1521-3773%2820021202%2941%3A23%3C4378%3A%3AAID-ANIE4378%3E3.0.CO%3B2-A » aria-label= »Article reference 3″ data-doi= »10.1002/1521-3773(20021202)41:23<4378::AID-ANIE4378>3.0.CO;2-A »>Article

    Google Scholar

  • Chen, J., Reed, M., Rawlett, A. & Tour, J. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 15501552 (1999).

    Article
    CAS
    PubMed

    Google Scholar

  • Hickmott, T. Lowfrequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 26692682 (1962).

    Article
    CAS

    Google Scholar

  • Chopra, K. Current-controlled negative resistance in thin niobium oxide films. Proc. IEEE 51, 941942 (1963).

    Article

    Google Scholar

  • Dearnaley, G., Stoneham, A. & Morgan, D. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 (1970).

    Article

    Google Scholar

  • Chua, L. Memristorthe missing circuit element. IEEE Trans. Circuit Theory 18, 507519 (1971).

    Article

    Google Scholar

  • Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 8083 (2008).

    Article
    CAS
    PubMed

    Google Scholar

  • Williams, R. S. Summary of the Faraday discussion on new memory paradigms: memristive phenomena and neuromorphic applications. Faraday Discuss. 213, 579587 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 43184440 (2016).

    Article
    CAS
    PubMed

    Google Scholar

  • Chen, H. & Fraser Stoddart, J. From molecular to supramolecular electronics. Nat. Rev. Mater. 6, 804828 (2021).

    Article
    CAS

    Google Scholar

  • Collier, C. et al. Electronically configurable molecular-based logic gates. Science 285, 391394 (1999).

    Article
    CAS
    PubMed

    Google Scholar

  • Geffroy, B., Le Roy, P. & Prat, C. Organic lightemitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572582 (2006).

    Article
    CAS

    Google Scholar

  • Zou, S.-J. et al. Recent advances in organic light-emitting diodes: toward smart lighting and displays. Mater. Chem. Front. 4, 788820 (2020).

    Article
    CAS

    Google Scholar

  • Williams, R. S. Whats next?[The end of Moores law]. Comput. Sci. Eng. 19, 713 (2017).

    Article

    Google Scholar

  • Knight, W. AI can do great thingsif it doesnt burn the planet. Wired Magazine https://go.nature.com/3ORsdbG (2020).

  • Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255260 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Jaeger, H., Noheda, B. & Van Der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers. Nat. Commun. 14, 4911 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Goswami, S., Goswami, S. & Venkatesan, T. An organic approach to low energy memory and brain inspired electronics. Appl. Phys. Rev. 7, 021303 (2020).

    Article
    CAS

    Google Scholar

  • Valov, I. & Kozicki, M. Organic memristors come of age. Nat. Mater. 16, 11701172 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Gray, H. B. New structures in transition metal chemistry. Coord. Chem. Rev. 1, 156163 (1966).

    Article
    CAS

    Google Scholar

  • Jrgensen, C. K. Differences between the four halide ligands, and discussion remarks on trigonal-bipyramidal complexes, on oxidation states, and on diagonal elements of one-electron energy. Coord. Chem. Rev. 1, 164178 (1966).

    Article

    Google Scholar

  • Goswami, S., Mukherjee, R. & Chakravorty, A. Chemistry of ruthenium. 12. Reactions of bidentate ligands with diaquabis [2-(arylazo) pyridine] ruthenium (II) cation. Stereoretentive synthesis of tris chelates and their characterization: metal oxidation,ligand reduction, and spectroelectrochemical correlation.Inorg. Chem. 22, 28252832 (1983).

    Article
    CAS

    Google Scholar

  • Samanta, S., Ghosh, P. & Goswami, S. Recent advances on the chemistry of transition metal complexes of 2-(arylazo) pyridines and its arylamino derivatives. Dalton Trans. 41, 22132226 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Joy, S. et al. Isolation and assessment of the molecular and electronic structures of azo-anion-radical complexes of chromium and molybdenum. Experimental and theoretical characterization of complete electron-transfer series. Inorg. Chem. 50, 999310004 (2011).

    Article
    CAS
    PubMed

    Google Scholar

  • Oregan, B. & Grtzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737740 (1991).

    Article

    Google Scholar

  • Hamann, T. W., Jensen, R. A., Martinson, A. B., Van Ryswyk, H. & Hupp, J. T. Advancing beyond current generation dye-sensitized solar cells. Energy Environ. Sci. 1, 6678 (2008).

    Article
    CAS

    Google Scholar

  • Goswami, S. et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16, 12161224 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Zhuo, Y. et al. A dynamical compact model of diffusive and drift memristors for neuromorphic computing. Adv. Electron. Mater. 8, 2100696 (2022).

    Article
    CAS

    Google Scholar

  • Rath, S. P., Thompson, D., Goswami, S. & Goswami, S. Manybody molecular interactions in a memristor. Adv. Mater. 35, 2204551 (2022).

    Article

    Google Scholar

  • Goswami, S. et al. Decision trees within a molecular memristor. Nature 597, 5156 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Paul, N., Samanta, S. & Goswami, S. Redox induced electron transfer in doublet azo-anion diradical rhenium (II) complexes. Characterization of complete electron transfer series. Inorg. Chem. 49, 26492655 (2010).

    Article
    CAS
    PubMed

    Google Scholar

  • Ouellette, R. & Rawn, J. Organic Chemistry 135165 (Academic Press, 2018).

  • Bhatt, V. Essentials of Coordination Chemistry: A Simplified Approach with 3D Visuals 63109 (Academic Press, 2015).

  • Li, Y. et al. Recent advances in organicbased materials for resistive memory applications. InfoMat 2, 9951033 (2020).

    Article
    CAS

    Google Scholar

  • Goswami, S. et al. Charge disproportionate molecular redox for discrete memristive and memcapacitive switching. Nat. Nanotechnol. 15, 380389 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Yi, S. I. et al. Energy and space efficient parallel adder using molecular memristors. Adv. Mater. 35, 2206128 (2022).

    Article

    Google Scholar

  • Shao, J.-Y., Cui, B.-B., Tang, J.-H. & Zhong, Y.-W. Resistive memory switching of transition-metal complexes controlled by ligand design. Coord. Chem. Rev. 393, 2136 (2019).

    Article
    CAS

    Google Scholar

  • Zhou, P. K. et al. Recent advances in covalent organic polymersbased thin films as memory devices. J. Polymer Sci. https://doi.org/10.1002/pol.20230273 (2023).

  • Cho, B., Song, S., Ji, Y., Kim, T. W. & Lee, T. Organic resistive memory devices: performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 28062829 (2011).

    Article
    CAS

    Google Scholar

  • Lapham, P., Vil-Nadal, L., Cronin, L. & Georgiev, V. P. Influence of the contact geometry and counterions on the current flow and charge transfer in polyoxometalate molecular junctions: a density functional theory study. J. Phys. Chem. C 125, 35993610 (2021).

    Article
    CAS

    Google Scholar

  • Mainzer, K. in Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua (eds Adamatzky, A. &Chen, G.) 146159 (World Scientific, 2013).

  • Guerin, S. et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat. Mater. 17, 180186 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Petit, L., Maldivi, P. & Adamo, C. Predictions of optical excitations in transition-metal complexes with time dependent-density functional theory: influence of basis sets. J. Chem. Theory Comput. 1, 953962 (2005).

    Article
    CAS
    PubMed

    Google Scholar

  • Singh, V. et al. Precursor to gas sensor: a detailed study of the suitability of copper complexes as an MOCVD precursor and their application in gas sensing. Inorg. Chem. 60, 1714117150 (2021).

    Article
    CAS
    PubMed

    Google Scholar

  • Kettle, S. F. A. Physical Inorganic Chemistry: A Coordination Chemistry Approach 185210 (University Science Books, 1996).

  • Wan, T. et al. Insensor computing: materials, devices, and integration technologies. Adv. Mater. 35, 2203830 (2022).

    Article

    Google Scholar

  • Pastur-Romay, L. A., Cedrn, F., Pazos, A. & Porto-Pazos, A. B. Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications. Int. J. Mol. Sci. 17, 1313 (2016).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Zhang, L. & Humphrey, M. G. Multiphoton absorption at metal alkynyl complexes. Coord. Chem. Rev. 473, 214820 (2022).

    Article
    CAS

    Google Scholar

  • Lokhande, P. et al. The progress and roadmap of metalorganic frameworks for high-performance supercapacitors. Coord. Chem. Rev. 473, 214771 (2022).

    Article
    CAS

    Google Scholar

  • Hu, M. et al. Memristorbased analog computation and neural network classification with a dot product engine. Adv. Mater. 30, 1705914 (2018).

    Article

    Google Scholar

  • Xiao, T. P., Bennett, C. H., Feinberg, B., Agarwal, S. & Marinella, M. J. Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 7, 031301 (2020).

    Article
    CAS

    Google Scholar

  • Csaba, G. & Porod, W. Coupled oscillators for computing: a review and perspective. Appl. Phys. Rev. 7, 011302 (2020).

    Article
    CAS

    Google Scholar

  • Ledoux, E. & Brunel, N. Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Front. Comput. Neurosci. 5, 25 (2011).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 934 (2011).

    Article
    CAS
    PubMed

    Google Scholar

  • Yuan, S. et al. Geometric deep optical sensing. Science 379, eade1220 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 022501 (2022).

    Article

    Google Scholar

  • Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 5259 (2018).

    Article

    Google Scholar

  • Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022).

    Article
    CAS
    PubMed

    Google Scholar

  • Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173195 (2020).

    Article
    CAS

    Google Scholar

  • Hu, M., Strachan, J. P., Li, Z. & Williams R. S. Crossbar arrays for calculating matrix multiplication. US Patent 10,497,440 B2 (2019).

  • Hu, M., Strachan, J. P., Li, Z. & Williams, R. S. Linear transformation accelerators. US Patent 10,529,418 B2 (2020).

  • Ascoli, A. et al. On local activity and edge of chaos in a NaMLab memristor. Front. Neurosci. 15, 651452 (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575591 (2022).

    Article

    Google Scholar

  • Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Terenzio, M., Schiavo, G. & Fainzilber, M. Compartmentalized signaling in neurons: from cell biology to neuroscience. Neuron 96, 667679 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Alberts, B. et al. Molecular Biology of the Cell 4th edn, Ch. 11 (Garland Science, 2002).

  • van Reenen, S., Kemerink, M. & Snaith, H. J. Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 38083814 (2015).

    Article
    PubMed

    Google Scholar

  • Harikesh, P. C. et al. Ion-tunable antiambipolarity in mixed ionelectron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 22, 242248 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Sarkar, T. et al. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774783 (2022).

    Article

    Google Scholar

  • Burke, K. Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012).

    Article
    PubMed

    Google Scholar

  • Kumar, N., Mignuzzi, S., Su, W. & Roy, D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Tech. Instrum. 2, 123 (2015).

    Article

    Google Scholar

  • Collins, B. A. & Ade, H. Quantitative compositional analysis of organic thin films using transmission NEXAFS spectroscopy in an X-ray microscope. J. Electron. Spectrosc. Relat. Phenom. 185, 119128 (2012).

    Article
    CAS

    Google Scholar

  • Watts, B. & Ade, H. NEXAFS imaging of synthetic organic materials. Mater. Today 15, 148157 (2012).

    Article
    CAS

    Google Scholar

  • Brown, T. D., Kumar, S. & Williams, R. S. Physics-based compact modeling of electro-thermal memristors: negative differential resistance, local activity, and non-local dynamical bifurcations. Appl. Phys. Rev. 9, 011308 (2022).

    Article
    CAS

    Google Scholar

  • Gergel-Hackett, N., Zangmeister, C. D., Hacker, C. A., Richter, L. J. & Richter, C. A. Demonstration of molecular assembly on Si (100) for CMOS-compatible molecule-based electronic devices. J. Am. Chem. Soc. 130, 42594261 (2008).

    Article
    CAS
    PubMed

    Google Scholar

  • Skomski, D., Abb, S. & Tait, S. L. Robust surface nano-architecture by alkalicarboxylate ionic bonding. J. Am. Chem. Soc. 134, 1416514171 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Wu, B. & Kumar, A. Extreme ultraviolet lithography and three dimensional integrated circuita review. Appl. Phys. Rev. 1, 011104 (2014).

    Article

    Google Scholar

  • www.actusduweb.com
    Suivez Actusduweb sur Google News


    Ce site utilise des cookies pour améliorer votre expérience. Nous supposerons que cela vous convient, mais vous pouvez vous désinscrire si vous le souhaitez. J'accepte Lire la suite