Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays – Nature Communications
Montanaro, A. Quantum algorithms: an overview. npj Quantum Inf. 2, 15023 (2016).
Google Scholar
Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).
Google Scholar
Gottesman, D. Stabilizer codes and quantum error correction. Preprint at http://arxiv.org/abs/quant-ph/9705052 (1997).
Knill, E. & Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A 55, 900 (1997).
Google Scholar
Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Computing 38, 1207 (2008).
Google Scholar
Knill, E., Laflamme, R. & Zurek, W. Threshold accuracy for quantum computation. Preprint at http://arxiv.org/abs/quant-ph/9610011 (1996).
Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281286 (2021).
Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11, 041058 (2021).
Google Scholar
Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 884889 (2022).
Postler, L. et al. Demonstration of fault-tolerant universal quantum gate operations. Nature 605, 675680 (2022).
Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205 (2020).
Google Scholar
Aliferis, P. & Preskill, J. Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008).
Google Scholar
Darmawan, A. S., Brown, B. J., Grimsmo, A. L., Tuckett, D. K. & Puri, S. Practical quantum error correction with the XZZX code and kerr-cat qubits. PRX Quantum 2, 030345 (2021).
Google Scholar
Puri, S., Flammia, S. T. & Girvin, S. M. Biaspreserving gates with stabilized cat qubits. Sci. Adv. 6, eaay5901 (2020).
Google Scholar
Cong, I. et al. Hardware-efficient, fault-tolerant quantum compu-tation with Rydberg atoms. Phys. Rev. X 12, 021049 (2022).
Google Scholar
Preskill, J. Fault-tolerant quantum computation. Preprint at http://arxiv.org/abs/quant-ph/9712048 (1997).
Suchara, M., Cross, A. W. & Gambetta, J. M. Leakage suppression in the toric code. Quantum Inf. Computation 15, 997 (2015).
Google Scholar
Cover, T. M. & Thomas, J. A. Elements of Information Theory, 2nd edn. (Wiley, Hoboken, NJ, 2006).
Grassl, M., Beth, T. & Pellizzari, T. Codes for the quantum erasure channel. Phys. Rev. A 56, 33 (1997).
Google Scholar
Stace, T. M., Barrett, S. D. & Doherty, A. C. Thresholds for topological codes in the presence of loss. Phys. Rev. Lett. 102, 200501 (2009).
Google Scholar
Muralidharan, S., Kim, J., Ltkenhaus, N., Lukin, M. D. & Jiang, L. Ultra-fast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014).
Google Scholar
Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 7 (2001).
Google Scholar
Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Modern Phys. 79, 135 (2007).
Google Scholar
Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000).
Google Scholar
Lukin, M. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).
Google Scholar
Saffman, M., Walker, T. G. & Mlmer, K. Quantum information with Rydberg atoms. Rev. Modern Phys. 82, 2313 (2010).
Google Scholar
Noguchi, A., Eto, Y., Ueda, M. & Kozuma, M. Quantum-state tomography of a single nu-clear spin qubit of an optically manipulated ytterbium atom. Phys. Rev. A 84, 030301 (2011).
Google Scholar
Ma, S. et al. Universal gate operations on nuclear spin qubits in an optical tweezer array of Yb 171 atoms. Phys. Rev. X 12, 021028 (2022).
Google Scholar
Jenkins, A., Lis, J. W., Senoo, A., McGrew, W. F. & Kaufman, A. M. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X 12, 021027 (2022).
Google Scholar
Campbell, W. C. Certified quantum gates. Phys. Rev. A 102, 022426 (2020).
Google Scholar
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Modern Phys. 87, 637 (2015).
Google Scholar
Wilson, J. T. et al. Trapping alkaline earth Rydberg atoms optical tweezer arrays. Phys. Rev. Lett. 128, 033201 (2022).
Google Scholar
Isenhower, L. et al. Demon-stration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010).
Google Scholar
Wilk, T. et al. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010).
Google Scholar
Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).
Google Scholar
Mitra, A. et al. Robust Mlmer-Srensen gate for neutral atoms using rapid adiabatic Rydberg dressing. Phys. Rev. A 101, 030301 (2020).
Google Scholar
Saffman, M., Beterov, I. I., Dalal, A., Pez, E. J. & Sanders, B. C. Symmetric Rydberg controlled-Z gates with adiabatic pulses. Phys. Rev. A 101, 062309 (2020).
Google Scholar
Burgers, A. P. et al. Controlling Rydberg excitations using ion-core transitions in alkaline-earth atom-tweezer arrays. PRX Quantum 3, 020326 (2022).
Google Scholar
Yamamoto, R., Kobayashi, J., Kuno, T., Kato, K. & Takahashi, Y. An ytterbium quantum gas microscope with narrow-line laser cooling. New J. Phys. 18, 23016 (2016).
Google Scholar
Saskin, S., Wilson, J. T., Grinkemeyer, B. & Thompson, J. D. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 122, 143002 (2019).
Google Scholar
Loftus, T., Bochinski, J. R., Shivitz, R. & Mossberg, T. W. Power-dependent loss from an ytterbium magneto-optic trap. Phys. Rev. A 61, 051401 (2000).
Google Scholar
McQuillen, P., Zhang, X., Strickler, T., Dunning, F. B. & Killian, T. C. Imaging the evolution of an ultracold strontium Rydberg gas. Phys. Rev. A 87, 013407 (2013).
Google Scholar
Goldschmidt, E. A. et al. Anomalous broadening in driven dissipative Rydberg systems. Phys. Rev. Lett. 116, 113001 (2016).
Google Scholar
Bergschneider, A. et al. Spin-resolved single-atom imaging of Li 6 in free space. Phys. Rev. A 97, 063613 (2018).
Google Scholar
Plenio, M. B. & Knight, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Modern Phys. 70, 101 (1998).
Google Scholar
Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. The XZZX surface code. Nat. Commun. 12, 2172 (2021).
Google Scholar
Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. Capacities of quantum erasure channels. Phys. Rev. Lett. 78, 3217 (1997).
Google Scholar
Delfosse, N. & Nickerson, N. H. Almostlinear time decoding algorithm for topological codes. Quantum 5, 595 (2021).
Google Scholar
Huang, S., Newman, M. & Brown, K. R. Fault-tolerant weighted union-find decoding on the toric code. Phys. Rev. A 102, 012419 (2020).
Google Scholar
Delfosse, N. & Zmor, G. Linear-time max-imum likelihood decoding of surface codes over the quantum erasure channel. Phys. Rev. Res. 2, 033042 (2020).
Google Scholar
Barrett, S. D. & Stace, T. M. Fault tolerant quantum computation with very high threshold for loss errors. Phys. Rev. Lett. 105, 200502 (2010).
Google Scholar
Madjarov, I. S. et al. High-fidelity entanglement and detec-tion of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857 (2020).
Google Scholar
Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227 (2021).
Google Scholar
Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233 (2021).
Google Scholar
Beugnon, J. Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nat. Phys. 3, 696 (2007).
Google Scholar
Yang, J. et al. Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps. Phys. Rev. Lett. 117, 123201 (2016).
Google Scholar
Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451 (2022).
Google Scholar
Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 21 (2021).
Google Scholar
Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).
Google Scholar
Bravyi, S. & Kitaev, A. Universal quantum computation with ideal clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).
Google Scholar
Fowler, A. G., Devitt, S. J. & Jones, C. Surface code implementation of block code state dis-tillation. Sci. Rep. 3, 1 (2013).
Google Scholar
Horsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).
Google Scholar
Landahl, A. J. & Ryan-Anderson, C. Quantum computing by color-code lattice surgery. arXiv:1407.5103 (2014).
Li, Y. A magic states fidelity can be superior to the operations that created it. New J. Phys. 17, 023037 (2015).
Google Scholar
Luo, Y.-H. et al. Quantum teleportation of physical qubits into logical code spaces. Proc. Natl Acad. Sci. USA 118, e2026250118 (2021).
Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).
Google Scholar
Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).
Schine, N., Young, A. W., Eckner, W. J., Martin, M. J. & Kaufman, A. M. Long-lived Bell states in an array of optical clock qubits. [cond-mat, physics:physics, physics:quant-ph]. Preprint at http://arxiv.org/abs/2111.14653 (2021).
Barnes, K. et al. Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun. 13, 2779 (2022).
Google Scholar
Yang, H.-X. et al. Realizing coherently convertible dual-type qubits with the same ion species. [physics, physics:quant-ph]. Preprint at http://arxiv.org/abs/2106.14906 (2021).
Allcock, D. T. C. et al. Omg blueprint for trapped ion quantum computing with metastable states. Appl. Phys. Lett. 119, 214002 (2021).
Google Scholar
Darmawan, A. S. & Poulin, D. Tensor-network simulations of the surface code under realistic noise. Phys. Rev. Lett. 119, 040502 (2017).
Google Scholar