Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays – Nature Communications

  • Montanaro, A. Quantum algorithms: an overview. npj Quantum Inf. 2, 15023 (2016).

    ADS
    Article

    Google Scholar

  • Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Gottesman, D. Stabilizer codes and quantum error correction. Preprint at http://arxiv.org/abs/quant-ph/9705052 (1997).

  • Knill, E. & Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A 55, 900 (1997).

    ADS
    MathSciNet
    CAS
    Article

    Google Scholar

  • Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Computing 38, 1207 (2008).

    MathSciNet
    MATH
    Article

    Google Scholar

  • Knill, E., Laflamme, R. & Zurek, W. Threshold accuracy for quantum computation. Preprint at http://arxiv.org/abs/quant-ph/9610011 (1996).

  • Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281286 (2021).

  • Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X 11, 041058 (2021).

    CAS

    Google Scholar

  • Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 884889 (2022).

  • Postler, L. et al. Demonstration of fault-tolerant universal quantum gate operations. Nature 605, 675680 (2022).

  • Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205 (2020).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Aliferis, P. & Preskill, J. Fault-tolerant quantum computation against biased noise. Phys. Rev. A 78, 052331 (2008).

    ADS
    Article
    CAS

    Google Scholar

  • Darmawan, A. S., Brown, B. J., Grimsmo, A. L., Tuckett, D. K. & Puri, S. Practical quantum error correction with the XZZX code and kerr-cat qubits. PRX Quantum 2, 030345 (2021).

    ADS
    Article

    Google Scholar

  • Puri, S., Flammia, S. T. & Girvin, S. M. Biaspreserving gates with stabilized cat qubits. Sci. Adv. 6, eaay5901 (2020).

    ADS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Cong, I. et al. Hardware-efficient, fault-tolerant quantum compu-tation with Rydberg atoms. Phys. Rev. X 12, 021049 (2022).

    CAS

    Google Scholar

  • Preskill, J. Fault-tolerant quantum computation. Preprint at http://arxiv.org/abs/quant-ph/9712048 (1997).

  • Suchara, M., Cross, A. W. & Gambetta, J. M. Leakage suppression in the toric code. Quantum Inf. Computation 15, 997 (2015).

    MathSciNet
    Article

    Google Scholar

  • Cover, T. M. & Thomas, J. A. Elements of Information Theory, 2nd edn. (Wiley, Hoboken, NJ, 2006).

  • Grassl, M., Beth, T. & Pellizzari, T. Codes for the quantum erasure channel. Phys. Rev. A 56, 33 (1997).

    ADS
    MathSciNet
    CAS
    Article

    Google Scholar

  • Stace, T. M., Barrett, S. D. & Doherty, A. C. Thresholds for topological codes in the presence of loss. Phys. Rev. Lett. 102, 200501 (2009).

    ADS
    PubMed
    Article
    CAS

    Google Scholar

  • Muralidharan, S., Kim, J., Ltkenhaus, N., Lukin, M. D. & Jiang, L. Ultra-fast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014).

    ADS
    PubMed
    Article
    CAS

    Google Scholar

  • Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 7 (2001).

    Article
    CAS

    Google Scholar

  • Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Modern Phys. 79, 135 (2007).

    ADS
    CAS
    Article

    Google Scholar

  • Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Lukin, M. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Saffman, M., Walker, T. G. & Mlmer, K. Quantum information with Rydberg atoms. Rev. Modern Phys. 82, 2313 (2010).

    ADS
    CAS
    Article

    Google Scholar

  • Noguchi, A., Eto, Y., Ueda, M. & Kozuma, M. Quantum-state tomography of a single nu-clear spin qubit of an optically manipulated ytterbium atom. Phys. Rev. A 84, 030301 (2011).

    ADS
    Article
    CAS

    Google Scholar

  • Ma, S. et al. Universal gate operations on nuclear spin qubits in an optical tweezer array of Yb 171 atoms. Phys. Rev. X 12, 021028 (2022).

    CAS

    Google Scholar

  • Jenkins, A., Lis, J. W., Senoo, A., McGrew, W. F. & Kaufman, A. M. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X 12, 021027 (2022).

    CAS

    Google Scholar

  • Campbell, W. C. Certified quantum gates. Phys. Rev. A 102, 022426 (2020).

    ADS
    CAS
    Article

    Google Scholar

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Modern Phys. 87, 637 (2015).

    ADS
    CAS
    Article

    Google Scholar

  • Wilson, J. T. et al. Trapping alkaline earth Rydberg atoms optical tweezer arrays. Phys. Rev. Lett. 128, 033201 (2022).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Isenhower, L. et al. Demon-stration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Wilk, T. et al. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Mitra, A. et al. Robust Mlmer-Srensen gate for neutral atoms using rapid adiabatic Rydberg dressing. Phys. Rev. A 101, 030301 (2020).

    ADS
    CAS
    Article

    Google Scholar

  • Saffman, M., Beterov, I. I., Dalal, A., Pez, E. J. & Sanders, B. C. Symmetric Rydberg controlled-Z gates with adiabatic pulses. Phys. Rev. A 101, 062309 (2020).

    ADS
    CAS
    Article

    Google Scholar

  • Burgers, A. P. et al. Controlling Rydberg excitations using ion-core transitions in alkaline-earth atom-tweezer arrays. PRX Quantum 3, 020326 (2022).

    ADS
    Article

    Google Scholar

  • Yamamoto, R., Kobayashi, J., Kuno, T., Kato, K. & Takahashi, Y. An ytterbium quantum gas microscope with narrow-line laser cooling. New J. Phys. 18, 23016 (2016).

    Article
    CAS

    Google Scholar

  • Saskin, S., Wilson, J. T., Grinkemeyer, B. & Thompson, J. D. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett. 122, 143002 (2019).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Loftus, T., Bochinski, J. R., Shivitz, R. & Mossberg, T. W. Power-dependent loss from an ytterbium magneto-optic trap. Phys. Rev. A 61, 051401 (2000).

    ADS
    Article

    Google Scholar

  • McQuillen, P., Zhang, X., Strickler, T., Dunning, F. B. & Killian, T. C. Imaging the evolution of an ultracold strontium Rydberg gas. Phys. Rev. A 87, 013407 (2013).

    ADS
    Article
    CAS

    Google Scholar

  • Goldschmidt, E. A. et al. Anomalous broadening in driven dissipative Rydberg systems. Phys. Rev. Lett. 116, 113001 (2016).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Bergschneider, A. et al. Spin-resolved single-atom imaging of Li 6 in free space. Phys. Rev. A 97, 063613 (2018).

    ADS
    CAS
    Article

    Google Scholar

  • Plenio, M. B. & Knight, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Modern Phys. 70, 101 (1998).

    ADS
    CAS
    Article

    Google Scholar

  • Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. The XZZX surface code. Nat. Commun. 12, 2172 (2021).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. Capacities of quantum erasure channels. Phys. Rev. Lett. 78, 3217 (1997).

    ADS
    MathSciNet
    CAS
    MATH
    Article

    Google Scholar

  • Delfosse, N. & Nickerson, N. H. Almostlinear time decoding algorithm for topological codes. Quantum 5, 595 (2021).

    Article

    Google Scholar

  • Huang, S., Newman, M. & Brown, K. R. Fault-tolerant weighted union-find decoding on the toric code. Phys. Rev. A 102, 012419 (2020).

    ADS
    CAS
    Article

    Google Scholar

  • Delfosse, N. & Zmor, G. Linear-time max-imum likelihood decoding of surface codes over the quantum erasure channel. Phys. Rev. Res. 2, 033042 (2020).

    CAS
    Article

    Google Scholar

  • Barrett, S. D. & Stace, T. M. Fault tolerant quantum computation with very high threshold for loss errors. Phys. Rev. Lett. 105, 200502 (2010).

    ADS
    PubMed
    Article
    CAS

    Google Scholar

  • Madjarov, I. S. et al. High-fidelity entanglement and detec-tion of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857 (2020).

    CAS
    Article

    Google Scholar

  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227 (2021).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233 (2021).

    ADS
    CAS
    PubMed
    Article

    Google Scholar

  • Beugnon, J. Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nat. Phys. 3, 696 (2007).

    CAS
    Article

    Google Scholar

  • Yang, J. et al. Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps. Phys. Rev. Lett. 117, 123201 (2016).

    ADS
    PubMed
    Article
    CAS

    Google Scholar

  • Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451 (2022).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 21 (2021).

    Article

    Google Scholar

  • Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS
    Article
    CAS

    Google Scholar

  • Bravyi, S. & Kitaev, A. Universal quantum computation with ideal clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    ADS
    MathSciNet
    MATH
    Article
    CAS

    Google Scholar

  • Fowler, A. G., Devitt, S. J. & Jones, C. Surface code implementation of block code state dis-tillation. Sci. Rep. 3, 1 (2013).

    Article

    Google Scholar

  • Horsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    ADS
    MathSciNet
    MATH
    Article

    Google Scholar

  • Landahl, A. J. & Ryan-Anderson, C. Quantum computing by color-code lattice surgery. arXiv:1407.5103 (2014).

  • Li, Y. A magic states fidelity can be superior to the operations that created it. New J. Phys. 17, 023037 (2015).

    ADS
    MATH
    Article

    Google Scholar

  • Luo, Y.-H. et al. Quantum teleportation of physical qubits into logical code spaces. Proc. Natl Acad. Sci. USA 118, e2026250118 (2021).

  • Cooper, A. et al. Alkaline-earth atoms in optical tweezers. Phys. Rev. X 8, 041055 (2018).

    CAS

    Google Scholar

  • Norcia, M. A., Young, A. W. & Kaufman, A. M. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X 8, 041054 (2018).

    Google Scholar

  • Schine, N., Young, A. W., Eckner, W. J., Martin, M. J. & Kaufman, A. M. Long-lived Bell states in an array of optical clock qubits. [cond-mat, physics:physics, physics:quant-ph]. Preprint at http://arxiv.org/abs/2111.14653 (2021).

  • Barnes, K. et al. Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun. 13, 2779 (2022).

    ADS
    CAS
    PubMed
    PubMed Central
    Article

    Google Scholar

  • Yang, H.-X. et al. Realizing coherently convertible dual-type qubits with the same ion species. [physics, physics:quant-ph]. Preprint at http://arxiv.org/abs/2106.14906 (2021).

  • Allcock, D. T. C. et al. Omg blueprint for trapped ion quantum computing with metastable states. Appl. Phys. Lett. 119, 214002 (2021).

    ADS
    CAS
    Article

    Google Scholar

  • Darmawan, A. S. & Poulin, D. Tensor-network simulations of the surface code under realistic noise. Phys. Rev. Lett. 119, 040502 (2017).

    ADS
    PubMed
    Article

    Google Scholar

  • www.actusduweb.com
    Suivez Actusduweb sur Google News


    Ce site utilise des cookies pour améliorer votre expérience. Nous supposerons que cela vous convient, mais vous pouvez vous désinscrire si vous le souhaitez. J'accepte Lire la suite