Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting – Nature Nanotechnology

  • Skjrv, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 1328 (2020).

    Google Scholar

  • Wang, R. et al. Artificial spin ice in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303306 (2006).

    CAS

    Google Scholar

  • Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930932 (2000).

    CAS

    Google Scholar

  • Ladak, S., Read, D., Perkins, G., Cohen, L. & Branford, W. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359363 (2010).

    CAS

    Google Scholar

  • Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7, 7579 (2011).

    CAS

    Google Scholar

  • Yu, H., Xiao, J. & Schultheiss, H. Magnetic texture based magnonics. Phys. Rep. 905, 159 (2021).

    CAS

    Google Scholar

  • Sklenar, J. et al. Field-induced phase coexistence in an artificial spin ice. Nat. Phys. 15, 191195 (2019).

    CAS

    Google Scholar

  • Louis, D. et al. A tunable magnetic metamaterial based on the dipolar four-state Potts model. Nat. Mater. 17, 10761080 (2018).

    CAS

    Google Scholar

  • Grundler, D. Reconfigurable magnonics heats up. Nat. Phys. 11, 438441 (2015).

    CAS

    Google Scholar

  • Chumak, A., Serga, A. & Hillebrands, B. Magnonic crystals for data processing. J. Phys. D 50, 244001 (2017).

    Google Scholar

  • Barman, A., Mondal, S., Sahoo, S. & De, A. Magnetization dynamics of nanoscale magnetic materials: a perspective. J. Appl. Phys. 128, 170901 (2020).

    CAS

    Google Scholar

  • Kaffash, M. T., Lendinez, S. & Jungfleisch, M. B. Nanomagnonics with artificial spin ice. Phys. Lett. A 402, 127364 (2021).

    CAS

    Google Scholar

  • Barman, A. et al. The 2021 magnonics roadmap. J. Phys. Condens. Matter 33, 413001 (2021).

    CAS

    Google Scholar

  • Papp, ., Porod, W. & Csaba, G. Nanoscale neural network using non-linear spin-wave interference. Nat. Commun. 12, 6422 (2021).

    CAS

    Google Scholar

  • Dion, T. et al. Observation and control of collective spin-wave mode-hybridisation in chevron arrays and square, staircase and brickwork artificial spin ices. Phys. Rev. Res. 4, 013107 (2022).

    CAS

    Google Scholar

  • Arroo, D. M., Gartside, J. C. & Branford, W. R. Sculpting the spin-wave response of artificial spin ice via microstate selection. Phys. Rev. B 100, 214425 (2019).

    CAS

    Google Scholar

  • Dion, T. et al. Tunable magnetization dynamics in artificial spin ice via shape anisotropy modification. Phys. Rev. B 100, 054433 (2019).

    CAS

    Google Scholar

  • Stenning, K. D. et al. Magnonic bending, phase shifting and interferometry in a 2D reconfigurable nanodisk crystal. ACS Nano 15, 674685 (2020).

    Google Scholar

  • Vanstone, A. et al. Spectral-fingerprinting: microstate readout via remanence ferromagnetic resonance in artificial spin systems. Preprint at https://arXiv.org/abs/2106.04406 (2021).

  • Chaurasiya, A. K. et al. Comparison of spin-wave modes in connected and disconnected artificial spin ice nanostructures using Brillouin light scattering spectroscopy. ACS Nano 15, 1173411742 (2021).

    CAS

    Google Scholar

  • Lendinez, S., Kaffash, M. T. & Jungfleisch, M. B. Emergent spin dynamics enabled by lattice interactions in a bicomponent artificial spin ice. Nano Lett. 21, 19211927 (2021).

    CAS

    Google Scholar

  • Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2019).

    CAS

    Google Scholar

  • Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100123 (2019).

    Google Scholar

  • Nakajima, K. Physical reservoir computingan introductory perspective. Jpn. J. Appl. Phys. 59, 060501 (2020).

    CAS

    Google Scholar

  • Markovi, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499510 (2020).

    Google Scholar

  • Milano, G. et al. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 21, 195202 (2022).

    CAS

    Google Scholar

  • Chumak, A. et al. Roadmap on spin-wave computing. IEEE Trans. Magn. https://doi.org/10.1109/TMAG.2022.3149664 (2022).

  • Dawidek, R. W. et al. Dynamically driven emergence in a nanomagnetic system. Adv. Funct. Mater. 31, 2008389 (2021).

    CAS

    Google Scholar

  • Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428431 (2017).

    CAS

    Google Scholar

  • Nakane, R., Tanaka, G. & Hirose, A. Reservoir computing with spin waves excited in a garnet film. IEEE Access 6, 44624469 (2018).

    Google Scholar

  • Hon, K. et al. Numerical simulation of artificial spin ice for reservoir computing. Appl. Phys. Express 14, 033001 (2021).

    CAS

    Google Scholar

  • Jensen, J. H., Folven, E. & Tufte, G. Computation in artificial spin ice. In ALIFE 2018: The 2018 Conference on Artificial Life, 1522 (MIT Press, 2018).

  • Jensen, J. H. & Tufte, G. Reservoir computing in artificial spin ice. In ALIFE 2020: The 2020 Conference on Artificial Life, 376383 (MIT Press, 2020).

  • Welbourne, A. et al. Voltage-controlled superparamagnetic ensembles for low-power reservoir computing. Appl. Phys. Lett. 118, 202402 (2021).

    CAS

    Google Scholar

  • Yildiz, I. B., Jaeger, H. & Kiebel, S. J. Re-visiting the echo state property. Neural Netw. 35, 19 (2012).

    Google Scholar

  • Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480487 (2019).

    Google Scholar

  • Gartside, J. C. et al. Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice. Nat. Commun. 12, 2488 (2021).

  • Metlov, K. L. & Guslienko, K. Y. Stability of magnetic vortex in soft magnetic nano-sized circular cylinder. J. Magn. Magn. Mater. 242, 10151017 (2002).

    Google Scholar

  • Guslienko, K. Y. Magnetic vortex state stability, reversal and dynamics in restricted geometries. J. Nanosci. Nanotechnol. 8, 27452760 (2008).

    CAS

    Google Scholar

  • Talapatra, A., Singh, N. & Adeyeye, A. Magnetic tunability of permalloy artificial spin ice structures. Phys. Rev. Appl. 13, 014034 (2020).

    CAS

    Google Scholar

  • Gartside, J. C., Burn, D. M., Cohen, L. F. & Branford, W. R. A novel method for the injection and manipulation of magnetic charge states in nanostructures. Sci. Rep. 6, 32864 (2016).

    CAS

    Google Scholar

  • Nisoli, C. et al. Ground state lost but degeneracy found: the effective thermodynamics of artificial spin ice. Phys. Rev. Lett. 98, 217203 (2007).

    Google Scholar

  • Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155161 (1948).

    CAS

    Google Scholar

  • Jungfleisch, M. et al. Dynamic response of an artificial square spin ice. Phys. Rev. B 93, 100401 (2016).

    Google Scholar

  • Gartside, J. C. et al. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nat. Nanotechnol. 13, 5358 (2018).

    CAS

    Google Scholar

  • Wang, Y.-L. et al. Rewritable artificial magnetic charge ice. Science 352, 962966 (2016).

    CAS

    Google Scholar

  • Chou, K. et al. Direct observation of the vortex core magnetization and its dynamics. Appl. Phys. Lett. 90, 202505 (2007).

    Google Scholar

  • Barman, A., Barman, S., Kimura, T., Fukuma, Y. & Otani, Y. Gyration mode splitting in magnetostatically coupled magnetic vortices in an array. J. Phys. D 43, 422001 (2010).

    Google Scholar

  • Schultheiss, K. et al. Excitation of whispering gallery magnons in a magnetic vortex. Phys. Rev. Lett. 122, 097202 (2019).

    CAS

    Google Scholar

  • Jaeger, H. The echo state approach to analysing and training recurrent neural networks with an erratum note (Fraunhofer Institute for Autonomous Intelligent Systems, 2010).

  • Lukoeviius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127149 (2009).

    Google Scholar

  • Atiya, A. F. & Parlos, A. G. New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11, 697709 (2000).

    CAS

    Google Scholar

  • Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    Google Scholar

  • Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173195 (2020).

    CAS

    Google Scholar

  • Burn, D., Chadha, M. & Branford, W. Dynamic dependence to domain wall propagation through artificial spin ice. Phys. Rev. B 95, 104417 (2017).

    Google Scholar

  • Pushp, A. et al. Domain wall trajectory determined by its fractional topological edge defects. Nat. Phys. 9, 505511 (2013).

    CAS

    Google Scholar

  • Gartside, J. C. et al. Current-controlled nanomagnetic writing for reconfigurable magnonic crystals. Commun. Phys. 3, 219 (2020).

    Google Scholar

  • Pancaldi, M., Leo, N. & Vavassori, P. Selective and fast plasmon-assisted photo-heating of nanomagnets. Nanoscale 11, 76567666 (2019).

    CAS

    Google Scholar

  • Gypens, P., Leo, N., Menniti, M., Vavassori, P. & Leliaert, J. Thermoplasmonic nanomagnetic logic gates. Preprint at https://arXiv.org/abs/2110.14212 (2021).

  • Stenning, K. D. et al. Low power continuous-wave all-optical magnetic switching in ferromagnetic nanoarrays. Preprint at https://arXiv.org/abs/2112.00697 (2021).

  • Bhat, V. et al. Magnon modes of microstates and microwave-induced avalanche in kagome artificial spin ice with topological defects. Phys. Rev. Lett. 125, 117208 (2020).

    CAS

    Google Scholar

  • Caravelli, F., Chern, G.-W. & Nisoli, C. Artificial spin ice phase-change memory resistors. New J. Phys. 24, 023020 (2022).

    Google Scholar

  • Caravelli, F., Iacocca, E., Chern, G.-W., Nisoli, C. & de Araujo, C. I. Anisotropic magnetomemristance. Preprint at https://arXiv.org/abs/2109.05101 (2021).

  • Vansteenkiste, A. & Van de Wiele, B. MuMax: a new high-performance micromagnetic simulation tool. J. Magn. Magn. Mater. 323, 25852591 (2011).

    CAS

    Google Scholar

  • Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Google Scholar

  • Stancil, D. D. & Prabhakar, A. Spin Waves 5 (Springer, 2009).

  • www.actusduweb.com
    Suivez Actusduweb sur Google News


    Ce site utilise des cookies pour améliorer votre expérience. Nous supposerons que cela vous convient, mais vous pouvez vous désinscrire si vous le souhaitez. J'accepte Lire la suite